

December 16, 2024

December 16th 2024

December 16th 2024

12/16/2024

12/16/2024

16 Dec 2024

iv

Microfilm or other copies of this dissertation are obtainable from

UMI Dissertation Publishing

ProQuest CSA

789 E. Eisenhower Parkway

P.O. Box 1346

Ann Arbor, MI 48106-1346

v

Vita

Armand Jordana received his M.Sc. degree in Mathematics, Computer Vision,

and Machine Learning from École Normale Supérieure Paris-Saclay in 2019. During

his master’s studies, he completed a research internship at INRIA Paris in the

WILLOW team under the supervision of Justin Carpentier. From 2019 to 2020,

he was a research intern in the Machines in Motion Laboratory at New York

University (NYU), supervised by Ludovic Righetti.

Since Fall 2020, he has been pursuing the Doctor of Philosophy degree in

Electrical Engineering at NYU, Tandon School of Engineering, under the supervision

of Ludovic Righetti and Justin Carpentier. His research interests include model

predictive control, risk-sensitive control, estimation, and robotics. During his

doctoral studies, he received the Best Poster Award at the 2024 Workshop on

Advancements in Trajectory Optimization and Model Predictive Control for Legged

Systems.

vi

Acknowledgements

I would like to express my deepest gratitude to my advisors Justin and Ludovic

for their scientific guidance and support. They both taught me a lot.

Justin introduced me to robotics in 2019 at INRIA Paris. This was a wonderful

opportunity for which I am most grateful. Since then, Justin has continued to guide

me throughout my PhD. In spite of the physical distance, he has closely supervised

my work and encouraged me. Justin’s commitment to accommodate me in the best

conditions in Paris was essential to my research. Thank you, Justin!

Ludovic offered me the unique opportunity to perform a PhD in his laboratory,

and I am extremely thankful for this. He has been a great source of inspiration;

his kindness, integrity, and expertise fostered my academic and personal growth.

Throughout my PhD journey, he consistently cultivated a space where I could be

myself and freely conduct research under his guidance. Thank you, Ludo!

Moreover, I would like to thank all current and past members of the Machines in

Motion laboratory. In this regard, I want to pay a special recognition of appreciation

to Sébastien and Avadesh, with whom I had the chance to collaborate and become

friends. Ahmad, it was wonderful to have you in New York City for a few months.

Majid, thank you for all the insightful discussions and for hosting me in Munich.

I would like to thank Nicolas and all the Gepetto team for their warm welcome

in Toulouse. During both of my visits, they provided me with optimal working

conditions and made me feel at home.

Finally, I would like to thank my friends and family who have continuously

supported me throughout this journey. This would not have been possible without

you.

Armand Jordana, Brooklyn, January 2025

vii

To my family

viii

ABSTRACT

REASONING ABOUT PERCEPTION UNCERTAINTY IN

NONLINEAR MODEL PREDICTIVE CONTROL

by

Armand Jordana

Advisors: Prof. Ludovic Righetti, Prof. Justin Carpentier

Submitted in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy (Electrical Engineering)

January 2025

In robotics, nonlinear Model Predictive Control (MPC) has emerged as a

promising tool to generate complex motions while enabling online adaptation of

the robot behavior as the environment changes. However, the lack of efficient

computational methods hindered its widespread deployment on real hardware. In

practice, MPC formulations and computational methods are often simplified to

obtain real-time capable controllers. In this thesis, we develop efficient numerical

methods to fully leverage the promises of MPC on robots by ensuring safe and

ix

globally optimal plans while being aware of the uncertainty resulting from the

partial sensing of the environment.

In the first part of this thesis, we present several contributions to state-feedback

MPC. Specifically, we introduce a state-of-the-art solver for constrained nonlinear

MPC. We propose the first demonstration of closed-loop nonlinear MPC with hard

constraints on an industrial manipulator. Then, we present a method to obtain

globally optimal plans using function approximation. Next, we investigate how

online estimation enables us to leverage force sensor information in state-feedback

MPC. This results in state-of-the-art performance on challenging tasks involving

contact interaction.

While online estimation can enable complex sensor feedback, this is insufficient

to reason about the uncertainty resulting from the partial sensing of the world.

In the second part of this thesis, we show how solving the estimation and control

jointly enables optimality under uncertainty. We propose an efficient numerical

method to solve dynamic game control with imperfect information and demonstrate

the ability of the approach to significantly improve performance on hardware in

the face of uncertainties.

x

Table of Contents

Vita . v

Acknowledgements . vi

Abstract . viii

List of Publications . xiii

List of Figures . xviii

List of Tables . xx

1 Introduction 1

1.1 Model Predictive Control . 3

1.2 Reasoning about uncertainty . 8

1.3 Statement of purpose . 10

1.4 Contributions . 11

1.5 Outline . 12

1.6 Notations . 13

I Model Predictive Control 14

2 Stagewise Resolution of Optimal Control Problems 16

2.1 Sequential Quadratic Programming for Optimal Control Problems . 21

xi

2.2 Solving the unconstrained QP . 25

2.3 Solving the constrained QP . 28

2.4 Practical implementation of the SQP 33

2.5 Experiments . 37

2.6 Discussion . 52

2.7 Conclusion . 53

3 Infinite-Horizon Value Function Approximation for Model Predic-

tive Control 55

3.1 Infinite horizon MPC . 58

3.2 Approximate infinite horizon MPC via function approximation . . . 60

3.3 Experiments . 64

3.4 Discussion . 76

3.5 Conclusion . 78

4 Force Feedback Model-Predictive Control via Online Estimation 79

4.1 Background: MPC with rigid contact 82

4.2 Force-feedback MPC via online estimation 84

4.3 Experimental study . 90

4.4 Conclusion . 98

II Reasoning about the Perception Uncertainty 100

5 Stagewise Newton Method for Dynamic Game Control With Im-

perfect State Observation 102

5.1 Dynamic game control with imperfect state observation 103

xii

5.2 Stagewise Newton method . 106

5.3 Experiments . 115

5.4 Conclusion . 120

6 Risk-Sensitive Extended Kalman Filter 121

6.1 Background: Extended Kalman Filter 122

6.2 Risk-sensitive filter . 123

6.3 Experiments . 128

6.4 Conclusion . 141

7 Conclusion 142

A Stagewise Implementations of Sequential Quadratic Programming

for Model-Predictive Control 144

B Stagewise Newton Method for Dynamic Game Control with Im-

perfect State Observation 156

B.1 Problem statement . 156

B.2 Characterization of the Newton step 158

B.3 Future stress . 164

B.4 Past stress . 169

B.5 Coupling . 174

xiii

List of Publications

This dissertation is based on the following publications:

A. Jordana⋆, S. Kleff⋆, A. Meduri⋆ et al. ”Stagewise implementations of

Sequential Quadratic Programming for Model Predictive Control”, Submitted to

T-RO, 2024

A. Jordana et al. ”Infinite-Horizon Value Function Approximation for Model

Predictive Control” Submitted to RAL, 2024

A. Jordana⋆, S. Kleff⋆, et al. Force feedback Model-Predictive Control via

Online Estimation. IEEE International Conference on Robotics and Automation

(ICRA), 2024

A. Jordana et al. ”Stagewise newton method for dynamic game control with

imperfect state observation.” IEEE Control Systems Letters, 2022.

A. Jordana et al. ”Risk-Sensitive Extended Kalman Filter.” IEEE International

Conference on Robotics and Automation (ICRA). 2024.

xiv

List of Figures

1.1 Construction workers on high metallic beams 2

1.2 MPC illustration . 4

2.1 Percentage of problem solved as a function of the maximum number

of iterations allowed niter on 4 randomized unconstrained OCPs for

the 4 solvers: DDP, FDDP with default line-search, FDDP with filter

line-search and our SQP. Our SQP exhibits a faster and more robust

convergence on difficult problems, such as the humanoid taichi task. 38

2.2 Average time per iteration for each solver on the 4 benchmark

problems (Kuka, Quadrotor, Pendulum, Taichi) 42

2.3 KKT residual norm and number of iterations for the circle tracking

task. Our SQP solver converges within 3 iterations while FDDP hits

the maximum number of iterations (niter = 5) without reaching the

desired tolerance. 43

xv

2.4 Solo center-of-mass tracking task with friction cone constraints. The

continuous lines represent the ratio FT

FN
at the front left foot, and the

gray dashed line represent the friction cone constraint. Observe in

the Fz plots the unconstrained OCP solution (green) crossing the

friction cone constraint while the constrained OCP solution (blue)

remains within the constraint. 44

2.5 Snapshots of standing motion. The red arrows represent the contact

forces and the white cones are the friction constraint (µ = 0.8). In

the 3rd and 4th frames, one can see the tangential forces lying on the

boundary on the friction cone. 45

2.6 Joint position q1 for the circle task in the constrained (blue) and

unconstrained case (green). The gray-shaded area represents the

infeasible region. 45

2.7 End-effector position trajectories in the (y, z)-plane during the circle

tracking task, subject to nonlinear constraints in Cartesian space.

The gray-shaded areas represent the infeasible regions. 46

2.8 The SQP solver keeps the end-effector on a straight line constraint

(black dotted line) even during unexpected perturbations. The SQP

solver is able to rapidly find robot configurations needed to satisfy

the constraints while tracking the desired goal. 46

2.9 Comparison between the compute time of 25 iterations OSQP OCP

and OSQP. 49

3.1 Approximated infinite horizon value function 66

3.2 Rollout of MPC controllers with different horizon lengths using the

learned value function as a terminal cost. 67

xvi

3.3 Trajectories avoiding the local optima for different initial conditions.

The red dot represents the target x⋆. 68

3.4 Error between the ground truth and the learned value function

during training for various horizon length. The larger the horizon in

Eq (3.7) is, the faster the algorithm converges to the ground truth. 70

3.5 We run 1000 MPC simulations starting from random initial states

with increasing horizon for each controller. Horizon 0 corresponds

to the policy. 71

3.6 Snapshots of pick-and-place task with static obstacle avoidance for

the default MPC without value function (bottom) and the proposed

MPC with value function (top). The green dots represent the end-

effector targets that must be reached alternatively while avoiding

collision with the black rod placed in the center. 74

3.7 End effector trajectory. The robot must reach a target on the over

side of the rod marked by the green dots, while avoiding the rod

(black dot). The proposed approach (blue) can achieve the task by

choosing a path going above the rod, while the default MPC (red)

remains stuck in a local minima (trying to go underneath the rod). 75

3.8 Cumulative cost. The proposed approach (blue) achieves a lower

cost by avoiding the rod and reaching the target. 76

3.9 Target tracking with static obstacle. Collision distance between the

robot’s links (approximated as capsules) and the obstacle (moving

rod). 76

xvii

4.1 Normal force trajectories of the medium-velocity polishing task. The

blue curve is the classical MPC without friction compensation, the

green curve is the classical MPC with the Coulomb model compen-

sation, and the red curve is the classical MPC with FL compensation. 93

4.2 Normal force (top) and end-effector position error (bottom) for the

polishing task: in blue the classical MPC (4.1), in green the classical

MPC with the FL compensation term (4.2.3), in red the proposed

approach with FL compensation and the force offset in the predictive

model (4.2.2.2). 95

4.3 Lateral force trajectories in the ex direction for the force step tracking

task: the blue curve is the classical MPC (Default), the green curve

is the classical MPC with with integral control (Integral) and the

red curve is the force offset estimation ∆F included in the predictive

model (∆F (PM)). 97

5.1 Initial plan for different values of µ. The larger µ the more the

controller plans to be pushed against the obstacle. 117

5.2 Average trajectory. Compared the neutral controller, the dynamic

game controller (µ = 6) exhibits a risk sensitive behavior as it

remains further from the high cost area representing the obstacle. . 117

5.3 Average control trajectories. Compared the neutral controller, the

dynamic game controller (µ = 6) has a larger standard deviation. . 118

5.4 End-effector position vs time. The dashed lines represent the target. 120

6.1 Mass estimation for both EKF and RS-EKF. 131

6.2 Quadrotor trajectory for both the EKF-MPC and the RS-EKF-MPC.132

xviii

6.3 End effector trajectory on a tracking task for both the EKF-MPC

and the RS-EKF-MPC. An unexpected force is applied between 1s

and 2s. 134

6.4 Median MSE on the tracking over 10, 000 experiments with random

external disturbances. The envelope represents the 25th and 75th

percentiles. 135

6.5 Comparison of both methods after an external force of 20N is applied

by pulling the robot vertically. The vertical line indicates the moment

when the robot is dropped. The top sub-figure overlays the trajectory

of both the EKF in blue and RS-EKF in solid. The RS-EKF-based

controller is more reactive to the perturbation and returns to the

reference sooner. 136

6.6 Comparison of the RS-EKF and EKF when initialized with a wrong

prior of 20N on the estimated vertical external force. 140

6.7 Comparison of the RS-EKF and EKF when initialized with a wrong

prior of −10 N on the estimated vertical external force. 141

xix

List of Tables

2.1 Solvers characteristics. 39

2.2 QP solvers characteristics. 50

2.3 Mean solving time in milliseconds and number of QP iterations for

different problems . 50

4.1 Mean-absolute error (MAE) of the normal force (in N) for the polish-

ing task over 10 circles: classical MPC (Default), FL compensation

(4.10) and Coulomb model (4.12). 94

4.2 MAE of the normal force (in N) for the polishing task: force offset

∆F vs. torque offset ∆τ , used in the control loop either in the

”predictive model” way of 4.2.2.2 or in the ”corrective control” way

of 4.2.2.1. 94

4.3 MAE of the normal force error for a step tracking task for different

controllers: classical MPC (Default), force offset estimation (∆F),

torque offset estimation (∆τ) and integral control. ∆F and ∆τ are

used as corrective control (4.2.2.1) or in the predictive model (4.2.2.2). 97

xx

4.4 Average squared torque and total cost for each controller for the

energy task: classical MPC (Default), force offset estimation (∆F),

torque offset estimation (∆τ) and integral control. ∆F and ∆τ are

used as corrective control (4.2.2.1) or in the predictive model (4.2.2.2). 98

1

Chapter 1

Introduction

In recent years, we have seen a tremendous amount of progress in Robotics.

Robots are starting to be able to manipulate complex objects [8, 37, 79], and legged

robots can now traverse challenging terrains [1, 73, 84]. Nevertheless, robots are

mostly confined to factories or research laboratories. While in the past decades, a

large number of repetitive and difficult tasks were automated, there still remain a

wide variety of physically challenging and dangerous jobs. Today, sectors such as

construction and agriculture still suffer high rates of injuries or fatal accidents 1.

Enabling the deployment of robots outside factories could yield major positive

impacts in those fields. From a technical perspective, one of the key challenges is

the necessity of deriving controllers that can consistently adapt to novel situations.

Factories can be designed to facilitate the deployment of robots and in many cases,

robot motions can be preplanned once and for all. In contrast, environments such

as field crops or construction sites are never the same, and one can hardly plan

coherent robot motions ahead of time.

1
https://www.bls.gov/charts/census-of-fatal-occupational-injuries/civilian-occupations-with-high-fatal-work-injury-rates.htm

https://www.bls.gov/charts/census-of-fatal-occupational-injuries/civilian-occupations-with-high-fatal-work-injury-rates.htm

2

Figure 1.1: Construction workers on high metallic beams

Figure 1.1 shows construction workers on high metallic beams executing complex

tasks. Most likely, those workers have never been to those places. Today, deploying

robots in such settings remains extremely challenging for several reasons. First, our

modeling of the world does not encompass all physical phenomena. For instance,

in robotics, it is extremely challenging to model actuator dynamics, friction, joint

elasticity, or communication delays accurately. Second, our perception of the state

of novel environments is limited. For instance, one can hardly know beforehand

how slippery the metallic beams are. Lastly, deploying robots outside factories

always comes with some danger. In our example, there is a high risk of falling from

the metallic beams.

While the concept of risk can be defined in many ways, we will consider risk

to be the effect of uncertainty on objectives. In settings such as those depicted in

Figure 1.1, a robot would have to carefully reason about uncertainties to account

for the risk. In these scenarios, the objective could be defined as completing a

manipulation task without falling while one of the sources of uncertainty could be

the slipperiness of the beam. This unknown slipperiness could affect the objective

by making the robot fall. Without any uncertainty, everything could be perfectly

planned ahead of time, and the robot could technically move quickly while stepping

3

next to the edges of the beams. However, in the presence of uncertainty, we expect

a controller to reason about the potential inaccuracies of its plan. In practice, this

could mean stepping only at the center of the beams and avoiding dynamic motions

in order to always get the time to stabilize the robot when something does not go

as planned.

Humans or animals can naturally adapt in the face of risk and behave cautiously.

However, automatically adapting the degree of cautiousness according to the level

of danger and uncertainty is an open problem in Robotics. In this thesis, we aim

to make progress in that direction. More precisely, we aim to address the following

question: How can we design controllers that reason online about novel

situations despite perception uncertainty?

1.1 Model Predictive Control

Model Predictive Control (MPC) has become popular for online robot decision-

making. It has shown compelling results with all kinds of robots ranging from

industrial manipulators [102], quadrupeds [129, 139, 164] to humanoids [44, 104].

The general idea of MPC is to formulate the robot motion generation problem as

a numerical optimization problem, i.e., a finite horizon Optimal Control Problem

(OCP), and solve it online at every control cycle using the current state estimate

as the initial state. By re-planning at each control cycle, the controller can adapt

the robot behavior as the state of the system and environment change. Figure 1.2

provides an illustration. Unlike standard robotics controllers such as PID or

Inverse Dynamics (ID), MPC does not track a pre-planned trajectory. In case a

disturbance is encountered, the controller searches for a new optimal path and does

4

not necessarily aim to reject the perturbation. Intuitively, it will either ignore or

reject the disturbance depending on whether it aligns with the high-level objective.

(a) Given a state, MPC plans a trajectory.
The first control input of the trajectory
can then be applied to the system.

(b) After a control cycle, the plan is not
executed as expected because of a distur-
bance. MPC re-plans a new trajectory.

Figure 1.2: MPC illustration

1.1.1 The real-time constraint

MPC was originally developed to control chemical plants which have very slow

dynamics [128]. In contrast, robots require extremely high replanning frequencies.

For instance, when the leg of a quadruped enters into contact with the ground at an

unexpected time, it is crucial to re-plan and adapt within milliseconds [192]. This

raises many technical challenges as solving an OCP can be very computationally

demanding. Furthermore, in order to execute complex motions and interact with

the environment, it is crucial to directly control the torque of the robot [89, 102].

This allows the MPC to reason simultaneously about the joint space and the

forces applied to the environment, a crucial requirement to perform locomotion and

5

manipulation. However, this implies optimizing over the full nonlinear dynamics of

the robot, which can make the optimization problem nonconvex.

Furthermore, ensuring safety with MPC is challenging. One way to guarantee

safety is to incorporate hard constraints in the OCP. Unfortunately, this can greatly

slow down the solving time. For this reason, to date, in robotics, MPC has mostly

been used as a planner by combining it with simpler controllers. Consequently,

the final behavior obtained by the robot can differ from the optimal whole-body

trajectory since the lower controller is free to act as a filter and modify the

trajectory [71, 164]. Ideally, a robot should adapt with versatility to perturbations

during a dynamic task and not reject perturbations naively. For instance, if a

human operator helps a robotic arm by pushing it towards its goal, the robot should

be compliant and not reject the perturbation. For these reasons, closing the loop

with constrained MPC on torque-controlled robots holds the promise of obtaining

safe, agile, and compliant robots.

In robotics, Differential Dynamic Programming (DDP) [125] is a popular choice

to solve OCPs because it exploits the problem’s structure well. This advantage

has led to a bustling algorithmic development over the past two decades [5, 68,

87, 92, 93, 114, 119, 120, 122, 141, 148, 161, 170]. In light of the increasing

number of variations of DDP, one might naively ask: why not use well-established

optimization algorithms [143]? Is there anything special about MPC that cannot

be tackled by, for example, an efficient implementation of Sequential Quadratic

Programming (SQP) [187]? In this thesis, we show that special implementations

of numerical methods developed by the optimization-based control community

[53, 65, 106, 144, 174, 183] are, in fact, sufficient to perform closed-loop constrained

MPC on a torque-controlled robot.

6

1.1.2 Overcoming local behavior

One limitation of existing MPC formulations in robotics is that without an

appropriate design of the terminal cost and constraint set, MPC with a finite

horizon is not guaranteed to be globally stable, optimal, or recursively feasible [126].

In robotics applications, MPC exhibits local behaviors for two main reasons. The

first is the use of a finite horizon, which creates local minima. The second is that

practitioners often rely on local Trajectory Optimization (TO) techniques. In

practice, this has led roboticists to spend a lot of time designing cost functions to

avoid local minima. Infinite-horizon constrained MPC is a compelling framework as

it ensures global stability [76]. In other words, it can guarantee that any initial state

converges to a zero-cost stable state while satisfying hard constraints. Unfortunately,

in the general case, the problem is intractable and has to be approximated [22].

Reinforcement Learning (RL) [22, 168] appears as a good candidate to move the

compute time offline by approximating policies or value functions. It has recently

shown impressive results in locomotion [1, 84] and manipulation [37, 79]. However,

these techniques are subject to the curse of dimensionality and can be unsafe

outside of their training distribution. Also, incorporating safety by imposing hard

constraints is challenging with current RL tools. In contrast, by re-planning online,

constrained MPC can adapt to novel situations and ensure safety.

Combining the advantages of online and offline decision making is appealing, and

it has proven to be highly effective in the context of games such as Go or Chess [162].

In the context of robotics, it could allow maintaining safety and ensuring hard

constraints while leveraging the full potential of function approximation. In this

thesis, we propose to combine MPC and value function approximation. The infinite

horizon value function is approximated using neural networks and trained using

7

value iteration and local gradient-based optimization. Then, during deployment,

the approximated value is used as a terminal cost for the OCP. We will show

that the approximated value function provides a global behavior while the online

optimization compensates for approximation errors and ensures hard constraint

satisfaction even outside of the training distribution.

1.1.3 The challenges of force control

Another limitation of the current MPC formulations in robotics is the difficulty

to reason about output signals such as force. Many tasks require accurate control of

contact forces exerted on the environment: polishing, grinding, grasping, etc. This

skill, trivial to humans, remains beyond most robots’ abilities despite continuous

progress in robotics research over the past decades. While MPC affords the online

synthesis of complex motions, it remains fundamentally limited in its ability to

control physical interaction. As a matter of fact, although force sensors have been

used since the early days of robotics [184], they remain notably absent from modern

control techniques relying on model-based optimization.

This is partly because predicting the evolution of contact forces is challenging in

general and involves sophisticated models [41] that are too specific or impractical for

real-time applications. Hence, the contact models used in practice for optimization-

based control are kept simple for algorithmic convenience [60]. However, these

simplifications hinder the ability to derive meaningful control policies in contact

with explicit force feedback. To this day, the predictive feedback control of contact

forces remains an open problem.

In this thesis, we show that a simple reformulation of the optimal control

problem combined with standard estimation tools enables us to achieve state-of-the-

8

art performance in force control while preserving the benefits of model-predictive

control, thereby outperforming traditional force control techniques. This paves

the way toward a more systematic integration of force sensors in model predictive

control.

1.2 Reasoning about uncertainty

While high frequency re-planning can be combined with online estimation to

adapt the model of the controller to unforeseen situations, this is not sufficient

to safely reason about the risk due to the perception uncertainty. Indeed, by

separating estimation and control, the model predictive controller only relies on a

state feedback and fully trusts the perception. Consequently, the uncertainty that

results from the partial sensing of the world is ignored. In practice, a controller

should adapt to the degree of certainty or confidence in the robot’s belief about the

world. For instance, coming back to the example depicted in Figure (1.1), unless

we have a perfect model of the beam’s slipperiness, we expect a robot to behave

conservatively because of the risk of falling.

Nevertheless, the common practice in robotics is to decouple estimation and

control (i.e., assume that the certainty equivalence principle holds) [44, 101, 108,

139, 164]. This approach is often chosen due to the availability of separate and

tractable control and estimation algorithms that can be deployed on the robot. The

estimation module is often a variation of a Gaussian filter, such as an Extended

Kalman Filter (EKF) [97], which computes both the mean and uncertainty of

the state estimates from sensor information. In control, MPC can then adapt

its behavior online based on the current robot and environment states. During

9

deployment, the estimation module is used to compute the mean of the state

estimate, which is then passed on to the controller to compute the optimal behavior

[44, 101, 108, 139, 164]. Unfortunately, relying on the most likely outcome can lead

to catastrophic behavior. For instance, on a load-carrying task with a quadruped

where the mass of the load is unknown, the notion of mean might not be appropriate

as this could lead the quadruped to apply insufficient force on the ground and then

fall.

Some approaches try to address this issue by adding robustness or safety bounds

in either the estimation or control block while keeping them independent. For

instance, Robust Extended Kalman filtering [57] adds robustness to inaccuracies of

the EKF or the model. However, the control objective is disregarded, and therefore

the controller cannot be robust to estimation uncertainties. Robust MPC has been

studied and applied to robots. [176] used tube-based MPC to control a biped.

[67] used linear stochastic MPC to account for uncertainties in bipedal walking.

However, this line of work assumes the state to be known. In contrast to such

approaches, we aim to link estimation and control by adding to the estimation

module a notion of control performance to improve robustness to the estimation

uncertainty.

As Mayne [126] advocates, one meaningful way to properly take into account

the measurement uncertainty is to use a minimax formulation linking control and

estimation. This problem has been extensively studied in [39, 40], which shows that

a specific dynamic game formulation leads to MPC approaches with bounded state

trajectories and provides an explicit characterization of these bounds. However,

the minimax problem was solved with an interior point method without taking

into account the specific structure of the problem and the sparsity induced by time.

10

In this thesis, we derive an explicit iterative solution that fully exploits sparsity,

resulting in an algorithm that linearly scales with the time horizon length and

which can be easily warm-started for use in MPC schemes [121].

Despite having been widely studied theoretically, to the best of our knowledge,

dynamic game control with imperfect state observations has not been approached

from a numerical optimization point of view. In this thesis, we consider the general

problem of dynamic game control with imperfect state observation and present

a numerically efficient provably convergent algorithm to solve it. The solution

presented generalizes commonly used techniques such as the extended Kalman

smoother and Differential Dynamic Programming. The proposed solution fully

exploits the sparsity of the problem and scales linearly with time, making it a

promising method for online reasoning about perception uncertainty.

1.3 Statement of purpose

In this thesis, we aim to derive controllers that reason online about novel

situations despite perception uncertainty. Performing Model Predictive

Control on torque-controlled robots is a promising way to synthesize complex and

compliant motions in novel environments. However, as of now, MPC practitioners

in robotics have suffered from three main limitations. The first limitation is the

challenge of incorporating hard constraints. While these are crucial for safety,

hard constraints can significantly slow down the compute time and introduce local

minima. The second limitation is that existing MPC frameworks can hardly reason

about output signals like force. Furthermore, state-feedback MPC naively trusts

the most probable state estimate and therefore ignores the risk associated with the

11

partial sensing of the environment. In this thesis, we propose several contributions

to overcome these limitations.

1.4 Contributions

In this thesis, we propose a set of algorithmic, experimental, and software

contributions.

First, a state-of-the-art solver for nonlinear constrained MPC is introduced and

deployed on an industrial manipulator. To the best of our knowledge, this is the

first demonstration of closed-loop nonlinear MPC with hard constraints on real

hardware. Then, we propose a method to overcome the local behaviors of MPC

using function approximation. Furthermore, we show how to endow MPC with

force feedback using online estimation and demonstrate how the proposed method

results in state-of-the-art performance on tasks involving force tracking.

Second, an efficient numerical method is proposed to solve dynamic game control

with imperfect state observation. We demonstrate the ability of the method to

reason about risk by directly considering sensor information. This formulation is

then used to derive a risk-sensitive filter. Robot experiments demonstrate the ability

of the approach to significantly improve performance in the face of uncertainties.

To the best of our knowledge, this is the first time that a nonlinear risk-sensitive

output-feedback MPC controller has been deployed on a robot.

All the proposed algorithms are accompanied by open-source software to ease

reproducibility.

12

1.5 Outline

Part I introduces several contributions in state-feedback Model Predictive

Control.

• Chapter 2 provides a comprehensive review of the literature on numerical

methods for optimal control and introduces an efficient implementation of an

SQP solver relying on a ADMM QP tailored for optimal control.

• Chapter 3 shows how to use function approximation to overcome the local

behavior of constrained trajectory optimization.

• Chapter 4 shows how to use online model adaptation to perform force-feedback

in MPC.

Part II investigates how online optimization can be used to reason about the risk

due to the perception uncertainty by solving the estimation and control problem

jointly.

• In Chapter 5, we derive a stagewise Newton method for dynamic game control

with imperfect state observations. The proposed solver couples estimation

and control by merging an iterative optimal control algorithm similar to

minimax DDP and an iterative risk-sensitive Kalman smoother.

• In chapter 6, we present a risk-sensitive Extended Kalman Filter that can

adapt its estimation to the control objective, hence allowing safe output-

feedback MPC.

13

1.6 Notations

The partial derivative of a function f with respect to a vector v is denoted

by ∂vf or f v. The second-order derivatives with respect to vectors u, v are

denoted as ∂u∂vf or fuv. The gradient of a scalar function f with respect

to a vector v is denoted by ∇vf . The Hessian with respect to vectors u, v is

denoted as ∇2
uvf . Bold characters are used to denote a sequence of vectors

indexed over a time horizon, e.g., v = {v1, · · · , vk, · · · }. If (vi)i∈N is a sequence

of vectors, then vk:t is a vector concatenating vk . . . vt. 1x∈A is the indicator

function, which equals 1 if x ∈ A and 0 otherwise. In denotes the identity

matrix of size n by n.

14

Part I

Model Predictive Control

15

16

Chapter 2

Stagewise Resolution of Optimal

Control Problems

The promise of model-predictive control in robotics has led to extensive develop-

ment of efficient numerical optimal control solvers in line with differential dynamic

programming because it exploits the sparsity induced by time. In this Chapter1,

we argue that this effervescence has hidden the fact that sparsity can be equally

exploited by standard nonlinear optimization. In particular, we show how a tai-

lored implementation of sequential quadratic programming achieves state-of-the-art

model-predictive control. Then, we clarify the connections between popular algo-

rithms from the robotics community and well-established optimization techniques.

Further, the sequential quadratic program formulation naturally encompasses the

1This chapter is adapted from the original publication : A. Jordana⋆, S. Kleff⋆, A. Meduri⋆,
et al., ”Stagewise implementations of Sequential Quadratic Programming for Model-Predictive
Control. Submitted to Transactions on Robotics (T-RO). This work is the result of a collaboration
with equal contribution between Armand Jordana, Sebastien Kleff, and Avadesh Meduri. In
particular, the dissertation’s author (Armand Jordana) contributed to the development and
implementation of the algorithms, the literature review, the hardware experiments, the benchmarks,
and open-sourcing of the mim-solvers library.

17

constrained case, a notoriously difficult problem in the robotics community. Specif-

ically, we show that it only requires a sparsity-exploiting implementation of a

state-of-the-art quadratic programming solver. We illustrate the validity of this

approach in a comparative study and experiments on a torque-controlled manipula-

tor. To the best of our knowledge, this is the first demonstration of closed-loop

nonlinear model-predictive control with constraints on a real robot.

Mayne first introduced DDP [125] as an efficient algorithm to solve nonlinear

OCPs by iteratively applying a backward pass over the time horizon and a nonlinear

forward rollout of the dynamics. This algorithm notably exhibits linear complexity

in the time horizon and local quadratic convergence [137]. More recently, Todorov

revived the interest in DDP by proposing the iterative Linear Quadratic Regulator

(iLQR) [114], a variant discarding the second-order terms of the dynamics. It has

since gained a lot of traction within the robotics community [93, 104, 120, 139, 164],

and its similarity to Gauss-Newton optimization has been established [14, 161].

This family of algorithms is often referred to as single-shooting algorithms[68]. All

of them only optimize over the control inputs while the state variables are indirectly

optimized through the dynamic constraints using either a linear or non-linear rollout.

Single shooting methods are efficient because they optimize over fewer variables.

However, these approaches face two main limitations: 1) as a single shooting

method, it requires a dynamically feasible initial guess and therefore, it can be

difficult to warm-start it with a specific state trajectory, an essential requirement to

reduce computation times [68] and 2) enforcing equality and inequality constraints

is not straightforward. The common practice is to enforce constraints softly using

penalty terms in the cost function. But this approach is heuristic (i.e., it requires

cost weight tuning) and tends to cause numerical issues [71].

18

Bock and Plitt [26] introduced multiple shooting for optimal control to address

the first limitation: it accepts an infeasible initial guess. Multiple shooting methods

optimize over both the state and control variables independently, which means they

do not need dynamic feasibility at the start. During optimization, multiple shooting

methods reduce the dynamic infeasibility or gaps between the state and control

variables. Finally, at convergence, a dynamically feasible solution that minimizes

the cost is returned [68]. Later, several multiple-shooting variants of DDP/iLQR

were proposed [68, 120] with significantly improved convergence abilities, which

have enabled nonlinear MPC at high frequency on real robots [44, 102, 120, 139].

Hybrid algorithms - algorithms that use a combination of single and multiple

shooting techniques - such as iLQR-GNMS [68] have also been proposed.

The second issue of enforcing constraints inside a DDP-like algorithm has

been addressed in several works. Tassa et al. [170] use a DDP-based projected

Newton method to bound control inputs. This approach has further been improved

and deployed on a real quadruped robot in [122]. More recently, augmented

Lagrangian methods have been used to enforce constraints in iLQR/DDP algorithms

[5, 87, 92, 148]. However, their convergence behavior is less understood than DDP,

whose seminal paper [125] was followed by sophisticated proofs [137]. To the best of

our knowledge, it has not yet been shown that those recent DDP-based algorithms

exhibit global convergence (i.e., convergence from any initial point to a stationary

point) and quadratic local convergence.

Besides, an open topic of debate is whether to use a nonlinear or a linear rollout

to enforce dynamics constraints in the forward pass. Previous work on single

shooting methods has argued that a nonlinear rollout can reduce the number of

iterations [115], while Zimmermann et al. [196] & Baumgärtner et al. [14] showed

19

mixed results both experimentally and theoretically. Recently, a nonlinear rollout

was implemented by a popular multiple-shooting variant of iLQR [120]. However,

we are unaware of any comparisons between linear and nonlinear rollouts in the

context of multiple shooting methods.

In the face of these challenges, we propose to take a fresh look at the earlier

literature. Indeed, Dunn et al. showed that Newton’s method could also be

implemented in a DDP-like fashion and equally benefit from linear complexity

in the time horizon and quadratic convergence [55]. This finding indicates that

optimal control does not fundamentally require new nonlinear optimization tools

but only tailored implementations that exploit the time-induced sparsity structure.

This naturally has led to numerous extensions to the constrained case. For example,

Wright proposed to use an SQP formulation with an active set to address arbitrary

nonlinear constraints [187]. However, because of the limitations of active set

methods, Wright focused on the single shooting case resolution. Then, Pantoja et al.

proposed an efficient implementation of SQP for control inequality constraints [146].

Di Pillo et al. proposed a tailored implementation of a Quasi-Newton method with

an augmented Lagrangian-based approach [46]. Dohrmann et al. studied equality-

SQP for optimal control [51]. Additionally, several others studied the tailored

implementation of Interior Point Methods for optimal control [52, 56, 150, 166, 189].

In the late 2000’s, with the promise of high-frequency linear MPC, a large body

of work studied how to tailor Quadratic Programming (QP) for the Constrained

Linear Quadratic Regulator (CLQR) problem. This was done with active set

methods [61, 152], ADMM-based solvers [144] and interior-point methods [65, 183].

We refer the reader to Kouzoupis et al. [106] for an extensive survey. More recently,

efficient ADMM implementations for GPUs and onboard microcontrollers have

20

been proposed [2, 25].

To solve the nonlinear case, Verschueren et al. [174] recently proposed efficient

software with an SQP implementation for OCP. Domahidi et al. [53] proposed to use

interior points with a tailored implementation in the case of affine dynamics. More

recently, Vanroye et al. [173] studied how to exploit the sparsity induced by time

in IPOPT [180]. Unfortunately, this line of work has not benefited from as much

experimental study as DDP-like algorithms. Recently, Gradnia et al. [72] showed

impressive experimental results on quadrupeds using a tailored SQP implementation

based on HPIPM [65], which lies in the continuity of previous works using [65, 174]

on real hardware [28, 145, 153]. However, to the best of our knowledge, we are not

aware of closed-loop constrained nonlinear MPC on torque-controlled robots.

Recently, Katayama et al. [98] reviewed the models and optimization algorithms

used in robotics in the context of MPC. As emphasized in this survey, we argue that

there is a gap between the optimization-based control and the robotics community.

On the one hand, an important part of the robotics community followed the

successes of Tassa et al. [169] and continued to propose DDP-like algorithms. On

the other hand, the optimization-based control community followed the work of

Wright and Pantoja et al. [146, 187] and proposed efficient implementations of

established optimization algorithms [106, 173, 174]. In this thesis, we aim to bridge

this gap.

In this Chapter, we follow the line of thought of the optimization-based control

community in order to push the limits of closed-loop nonlinear MPC in robotics.

First, we shed light on the direct connection between modern multiple-shooting

DDP-like algorithms and textbook SQP algorithms. Second, we show through an

experimental study that a standard stagewise SQP formulation is, in fact, superior

21

to the state-of-the-art FDDP [120]. Third, we propose a stagewise alternating

direction method of multipliers (ADMM) QP solver inspired by OSQP [167].

The proposed QP solver, OSQP OCP, leverages Riccati recursions in order to

maintain linear complexity in the time horizon while also enforcing constraints.

Using this custom QP implementation inside the SQP formulation, we can solve

arbitrary nonlinear constrained OCPs efficiently while inheriting the well-known

convergence properties of standard SQPs. Lastly, we demonstrate the ability of

this SQP formulation to perform closed loop nonlinear constrained MPC on a

torque-controlled manipulator. To the best of our knowledge, this is the first

demonstration of closed-loop nonlinear MPC with hard constraints on a real robot.

The optimization software is integrated with Crocoddyl [120] and is available

open-source (https://github.com/machines-in-motion/mim_solvers).

2.1 Sequential Quadratic Programming for Opti-

mal Control Problems

In this Chapter, we study constrained optimal control problems of the form:

min
x,u

T−1∑
k=0

ℓk(xk, uk) + ℓT (xT) (2.1a)

subject to xk+1 = fk(xk, uk), 0 ≤ k < T, (2.1b)

ck(xk, uk) ≥ 0, 0 ≤ k < T, (2.1c)

cT (xT) ≥ 0, (2.1d)

https://github.com/machines-in-motion/mim_solvers

22

where x = (x1, ..., xT) is the state sequence, u = (u0, u1, ..., uT−1) the control inputs

and x0 is the initial state provided by the user (e.g., estimated state). The transition

functions, fk, the cost functions, ℓk and the constraint functions, ck, are supposed

to be twice differentiable. To keep notations simple, we formulated the OCP with

inequality, which also encompasses equality constraints. Yet, equality constraints

can be treated separately from general inequalities in practice.

Considering the state sequence as an optimization variable allows the opti-

mization procedure to iterate through infeasible trajectories, yielding a multiple-

shooting approach [26].

Remark 1. One may choose to optimize only on the sequence of control inputs and

define the dynamics constraints implicitly, yielding a single shooting approach. In

that case, if no inequality constraints are considered, the problem is unconstrained

and can be solved via an efficient implementation of Newton’s method [55] or with

a modified Newton’s method with a nonlinear rollout, namely DDP [125].

In this thesis, we focus on multiple-shooting approaches. The associated La-

grangian is:

L(x,u,λ,µ) = ℓT (xT)− µ⊤
T cT (xT) + (2.2)

T−1∑
k=0

ℓk(xk, uk)− λ⊤
k+1(xk+1 − fk(xk, uk))− µ⊤

k ck(xk, uk),

where λ = (λ1, ..., λT)
⊤ and µ = (µ0, ..., µT)

⊤ are Lagrange multipliers.

Intuitively, SQPs iteratively solve QPs to find a tuple (x,u,λ,µ) that satisfies

the KKT conditions [143]. Note that we consider the constraint x0 = x̄0 to be

implicit. Therefore, no Lagrange multiplier is associated with that constraint. For

23

simplicity, we slightly abuse the notation by referring to l0(x0, u0) instead of l0(u0)

even if x0 is fixed.

Remark 2. Note that one might also want to consider a generic constraint on the

initial condition c(x0) (e.g., in the context of robust control [124]). To do so, the

initial condition must be considered an optimization variable. Although we do not

consider this setting to clarify derivations, our work naturally extends to this case.

More precisely, at the nth iteration, given a guess on the tuple (x[n], u[n],λ[n],µ[n]),

we aim to find a correction on the guess by solving the following QP problem (Al-

gorithm 18.1, [143]):

min
∆x,∆u

T−1∑
k=0

1

2

∆xk

∆uk


⊤ Qk Sk

S⊤
k Rk


∆xk

∆uk

+

qk
rk


⊤ ∆xk

∆uk


+

1

2
∆x⊤

TQT∆xT +∆x⊤
T qT (2.3a)

s.t.∆xk+1 = Ak∆xk +Bk∆uk + γk+1, 0 ≤ k < T, (2.3b)

Dk∆xk + Ek∆uk + ck ≥ 0, 0 ≤ k < T. (2.3c)

DT∆xT + cT ≥ 0. (2.3d)

where qT = ∇xℓT (x
[n]
T) and

QT =
(
∇2

xxℓT − µ⊤
T∇2

xxcT
)
(x

[n]
T) (2.4)

Qk =
(
∇2

xxℓk + λ⊤
k+1∇2

xxfk − µ⊤
k∇2

xxck
)
(x

[n]
k , u

[n]
k)

Sk =
(
∇2

xuℓk + λ⊤
k+1∇2

xufk − µ⊤
k∇2

xuck
)
(x

[n]
k , u

[n]
k)

Rk =
(
∇2

uuℓk + λ⊤
k+1∇2

uufk − µ⊤
k∇2

uuck
)
(x

[n]
k , u

[n]
k)

24

Ak = ∇xfk(x
[n]
k , u

[n]
k), Bk = ∇ufk(x

[n]
k , u

[n]
k) 0 ≤ k < T.

qk = ∇xℓk(x
[n]
k , u

[n]
k), rk = ∇uℓk(x

[n]
k , u

[n]
k)

Dk = ∇xck(x
[n]
k , u

[n]
k), Ek = ∇uck(x

[n]
k , u

[n]
k)

ck = ck(x
[n]
k , u

[n]
k), DT = ∇xcT (x

[n]
k) (2.5)

Qk, Sk, Rk are the Hessians of the Lagrangian with respect to the state and control

inputs, Ak and Bk are the dynamics Jacobian, Dk, Ek, DT are the constraint

Jacobian and γk+1 = fk(x
[n]
k , u

[n]
k)− x

[n]
k+1 is the constraint violation which is often

referred to as dynamic gaps [120] or defects [68]. Note that this formulation of SQP

and its associated QP is precisely the same as the one proposed in the seminal

multiple-shooting article [26].

Remark 3. In his seminal work introducing multiple shooting [26], Bock exploits

the sparsity of the quadratic problem of Eq. (2.3) induced by the multiple shooting

structure yielding a cubic complexity in the time horizon, T . Instead, this work

exploits the sparsity induced by time in order to achieve a linear complexity.

The solution of the QP (∆x,∆u) is then used to update the guess:

x[n+1] = x[n] + α∆x (2.6a)

u[n+1] = u[n] + α∆u (2.6b)

Here, α is the step size and is chosen using a line search method. λ[n+1] and µ[n+1] are

then replaced by the associated Lagrange multiplier of the QP (2.3) [143]. Provided

assumptions on the Problem (2.1), SQPs can guarantee local quadratic convergence

or super-linear convergence in the case of quasi-Newton approximation [143].

25

2.2 Solving the unconstrained QP

In this section, we review the case when the OCP has no constraints to recall

the equivalence between the backward Riccati recursions used in DDP and a special

type of Gaussian elimination for tridiagonal matrices, specialized to the sparsity

pattern of the KKT system arising in OCPs. This result, insufficiently known in

the robotics community, will then be exploited to propose a novel extension to the

constrained case.

Proposition 1. Without inequality constraints, the KKT conditions of Problem

(2.3) can be written as a block tri-diagonal symmetric matrix equation.



Γ1 M⊤
1 0 0 · · · 0

M1 Γ2 M⊤
2 0 · · · 0

0 M2 Γ3 M⊤
3 · · · 0

0 0 M3 Γ4
. . . 0

...
...

...
.

...

0 0 0 0
. . . ΓT





s1

s2

s3

s4
...

sT


=



g1

g2

g3

g4
...

gT


(2.7)

where:

Γk =


Rk−1 0 −B⊤

k−1

0 Qk I

−Bk−1 I 0

, Mk =


0 S⊤

k 0

0 0 0

0 −Ak 0

 ,

26

and sk =


∆uk−1

∆xk

−λk

, gk =


−rk−1

−qk

γk

 . (2.8)

The proof is only computational and is detailed in the supplementary material A.

Note that we slightly abuse the notation by using the λ as the Lagrange multiplier

for both the QP and the nonlinear problem. The most straightforward way to solve

such a system is to apply Gaussian elimination by using the well-known Thomas

algorithm [111] (Algorithm 1) to achieve a complexity in O(Tm3) where m is the

size of the control vector.

Algorithm 1: Thomas algorithm

1 Γ̄T ← ΓT

2 ḡT ← Γ−1
T gT

/* backward pass */

3 for k ← 1 to T − 1 do
4 Γ̄k ← Γk −M⊤

k Γ̄
−1
k+1Mk

5 ḡk ← Γ̄−1
k (gk −M⊤

k ḡk+1)

/* forward pass */

6 s1 ← ḡ1
7 for k ← 1 to T − 1 do
8 sk+1 ← ḡk+1 − Γ̄−1

k+1Mksk

In particular, we use the knowledge of the structure (sparsity pattern) in both

Γk and Mk to recover simpler recursions. This leads to another way of obtaining

the backward Riccati equations of LQR, which is accepted knowledge in the

optimization-based control community [14, 47, 55, 106, 187] but is largely ignored

in robotics.

Proposition 2. By applying the Thomas algorithm, we recover the well-known

Riccati recursions. Specifically, the backward pass can be done by initializing

27

VT = QT and vT = qT , and then by applying the following equations:

hk = rk +B⊤
k (vk+1 + Vk+1γk+1) (2.9)

Gk = S⊤
k +B⊤

n Vk+1Ak Kk = −H−1
k Gk

Hk = Rk +B⊤
k Vk+1Bk kk = −H−1

k hk

Vk = Qk + A⊤
k Vk+1Ak −K⊤

k HkKk

vk = qk +K⊤
k rk + (Ak +KkBk)

⊤(vk+1 + Vk+1γk+1)

Then, the forward pass initializes ∆x0 = 0 and unrolls the linearized dynamics:

∆xk+1 = (Ak +BkKk)∆xk +Bkkk + γk+1 (2.10a)

∆uk = Kk∆xk + kk (2.10b)

λk = Vk∆xk + vk (2.10c)

Proof. The proof is mainly computational and relies on the analytical inversion of

Γ̄k in order to prove by recursion that:

Γ̄k =


Rk−1 0 −B⊤

k−1

0 Vk I

−Bk−1 I 0

 (2.11a)

ḡk = Γ̄−1
k


−rk−1

−vk

γk

 (2.11b)

In other words, the recursion on Γ̄k and ḡk can be substituted by the recursion

on the value function Hessian and gradient. The forward recursion can then be

28

recovered using sk+1 = ḡk+1 − Γ̄−1
k+1Mksk and the analytical inversion of Γ̄k. Detailed

derivations are provided in the supplementary material A.

This result shows that the backward Riccati equations used for Linear Quadratic

Regulators (LQR) are an efficient technique for solving Quadratic Programs with a

tri-diagonal symmetric KKT matrix. Consequently, these equations are ideal for

solving OCPs with linear dynamics and quadratic costs.

Remark 4. A vast amount of literature exists on tri-diagonal matrices. Under-

standing the structure of the KKT matrices inherent to OCP enables the use of

any of these techniques directly. There are methods to factor those matrices or to

solve them more efficiently. For instance, parallel cyclic reduction can be used in

order to achieve a O(log(T)) complexity, which might be interesting for problems

with long time horizons [63, 142, 155, 188].

2.3 Solving the constrained QP

We are now in the position to extend the discussion of the previous section to

the case with inequality constraints. When inequalities are added, the underlying

KKT system associated with the QP defined in (2.3) will have the same tri-diagonal

structure. Therefore, similar recursions can be used to solve it efficiently. For

instance, HPIPM [65] derives efficiently an interior point method. We chose to

tailor OSQP [167] for OCPs because it can handle infeasibility better than HPIPM

and ADMM-based methods are known to find a reasonably good solution in a

few iterations [27, 64], two appealing features for MPC applications. Finally, as

originally discussed by [144], ADMM-based methods can easily be implemented

sequentially. We illustrate this by deriving a tailored implementation of the modern

29

ADMM-based solver OSQP [167] for OCP. However, we would like to highlight that

the reader could choose any other desired sparsity-exploiting QP solver depending

on their preference.

2.3.1 Background on ADMM

Here, we follow [27, 167] to briefly summarize ADMM. Using generic notations,

Problem (2.3) aims to solve a problem of the form:

min
v∈Dom(g)

g(v) s.t. Pv ∈ C (2.12)

Note that we use generic notations of the QP literature in this section. Hence,

v denotes the optimization variable. Furthermore, P is a matrix, g is a convex

function, and C is a convex set. The ADMM updates are then:

ṽj+1 = argmin
v∈Dom(g)

g(v) +
ρ

2
∥Pv − zj + ρ−1yj∥22

+
σ

2
∥v − vj∥22 (2.13a)

z̃j+1 = αP ṽj+1 + (1− α)zj (2.13b)

vj+1 = αṽj+1 + (1− α)vj (2.13c)

zj+1 = ΠC
(
z̃j+1 + ρ−1yj

)
(2.13d)

yj+1 = yj + ρ
(
z̃j+1 − zj+1

)
(2.13e)

where ΠC is the projection operator on the convex set C, ρ is the penalty parameter

that encourages consensus between v and z, and α ∈ (0, 2) is an over-relaxation

parameter that improves convergence speed (e.g., when set between 1.5 and 1.8 [27]).

30

2.3.2 Tailored ADMM for optimal control

Here, we present the ADMM-based QP solver [27], which is tailored for optimal

control problems. The presented algorithm is mainly inspired by [144]. We further

introduce more recent techniques developed in ADMM [27, 167] to the previous work

[144] to improve solver performance. Finally, we provide an efficient implementation

of the proposed solver, enabling reliable real-robot deployment.

In order to exploit the time-induced sparsity and leverage the Riccati recursions

specific to the OCP formulation, we design a QP solver that always maintains the

feasibility of the dynamics. More precisely, we consider the optimization variable

to be

v ≜ (∆x,∆u)⊤ (2.14)

and g to be the cumulative cost function defined in Eq. (2.3a), We propose to

define Dom(g) to encode the set of feasible linearized dynamics (2.3b) while Pv ∈ C

encodes the path and terminal constraint (2.3c) (2.3d). Importantly, considering

the linearized dynamics throughout the domain of g (instead of incorporating them

in Pv ∈ C) is key to leverage the Riccati recursions. This choice makes our solver

differ from OSQP and we will show that this can lead to a faster convergence in

terms of the number of iterations. In the end, Eq. (2.13a) can therefore be written

as:

31

min
∆x,∆u

T−1∑
k=0

∆xk

∆uk


⊤ Qk Sk

S⊤
k Rk


∆xk

∆uk

+

qk
rk


⊤ ∆xk

∆uk


+∆x⊤

TQT∆xT +∆x⊤
T qT +

ρ

2

∥∥DT∆xT − zjT + ρ−1yjT
∥∥2
2

+
T−1∑
k=0

ρ

2

∥∥Dk∆xk + Ek∆uk − zjk + ρ−1yjk
∥∥2
2

+
⊤∑

k=0

σ

2

∥∥∆xk −∆xj
k

∥∥2
2
+

T−1∑
k=0

σ

2

∥∥∆uk −∆uj
k

∥∥2
2

(2.15a)

s.t. ∆xk+1 = Ak∆xk +Bk∆uk + γk+1. (2.15b)

We denote yj = (yj0, y
j
1, ..., y

j
T)

⊤ and zj = (zj0, z
j
1, ..., z

j
T)

⊤. Therefore, Eq. (2.13a)

has the exact same structure as the unconstrained case mentioned in Section 2.2.

Note that the stagewise nature of the inequality constraints allows us to write the ρ

dependent regularization terms in a block-sparse way as well. More precisely, as each

inequality only depends on one time-step, the ρ dependent regularization term can

be written as a stagewise sum of quadratic cost. Consequently, Eq. (2.13a) can be

solved with a backward and forward pass similar to those of the unconstrained case,

ensuring a linear complexity in the time horizon. Furthermore, due to the stagewise

nature of the inequality constraint, Eq. (2.13b) - (2.13e) can be implemented

recursively or in parallel. Algorithm 2 summarizes the procedure.

2.3.3 Details on the QP

In our OSQP OCP, we take σ = 10−6 , α = 1.6 and consider the same schedule

as OSQP for the ρ-update [167]. Subsequently, the new backward recursion is only

32

Algorithm 2: ADMM tailored for OCP

Input: ∆xj,∆uj, zj,yj

/* Minimization problem */

1 Solve (2.15) using LQR to get ∆̃x
j+1

, ∆̃u
j+1

/* Lagrange multiplier update */

2 for k ← 1 to T − 1 do

3 z̃jk = α(Dk∆xj+1
k + Ek∆uj+1

k) + (1− α)zjk

4 ∆xj+1
k = α∆̃x

j+1

k + (1− α)∆xj
k

5 ∆uj+1
k = α∆̃u

j+1

k + (1− α)∆uj
k

6 zjk = max(ck, z̃
j
k + ρ−1yjk)

7 yj+1
k = yjk + ρ(z̃jk − zj+1

k)

8 z̃jT = αDT∆xj+1
T + (1− α)zjT

9 ∆xj+1
T = α∆̃x

j+1

T + (1− α)∆xj
T

10 zjT = max(cT , z̃
j
T + ρ−1yjT)

11 yj+1
T = yjT + ρ(z̃jT − zj+1

T)
Output: ∆xj+1,∆uj+1, zj+1,yj+1

needed when ρ is updated (once in 25 ADMM iterations). This makes the algorithm

highly efficient when compared to a standard QP solver and the solver proposed in

[144] because the forward passes are very cheap (only matrix-vector multiplications),

and the inversion in the backward pass happens very few times. Furthermore, the

QP is warm-started by the solution of the problem with only equality constraint

(dynamic-feasibility). This comes at the cost of Riccati recursions but dramatically

reduces the total number of ADMM iterations required. Lastly, we compute a

relative primal and dual tolerance after each ADMM iteration as discussed in [27].

We use these quantities as termination criteria.

33

2.4 Practical implementation of the SQP

2.4.1 Gauss-Newton approximation

A common practice is to ignore the second-order term of the constraints as it

is expensive to compute [68, 114, 120]. Subsequently, the second-order cost terms

become:

QT = ∇2
xxℓT (x

[n]
T), Qk = ∇2

xxℓk(x
[n]
k , u

[n]
k)

Sk = ∇2
xuℓk(x

[n]
k , u

[n]
k), Rk = ∇2

uuℓk(x
[n]
k , u

[n]
k), (2.16)

for 0 ≤ k < T . A direct consequence is that (2.3) is now independent of the

multipliers. In this unconstrained case, the resulting SQP can be efficiently solved

by sequentially constructing a QP at each iterate and solving it with LQR. This

method was initially proposed as the Gauss-Newton Multiple Shooting (GNMS)

method in [68]. However, the connection to SQPs was not discussed in the paper.

Thus, GNMS is an efficient SQP algorithm to solve equality-constrained nonlinear

optimization problems with block separable constraints and costs when the second-

order terms are ignored.

Remark 5. Note that more sophisticated schemes estimating the exact Hessians

iteratively could be used as done in [26]. Furthermore, in the unconstrained case,

the recent work of [141] suggests that the convergence benefits might compensate for

the computational requirement of the second-order computations.

34

2.4.2 Linear rollout

By nature of the SQP algorithm, the update step (2.6) is equivalent to making

a linear rollout of the dynamics (cf. (2.10a)). However, a nonlinear rollout is often

favored in DDP-like algorithms, e.g., in the popular Feasible-DDP algorithm [120]

or in ALTRO [87]. While [125, 137] studied well the local and global convergence

property of DDP, to the best of our knowledge there is no guarantee that these

nonlinear rollout formulations maintain global convergence in the multiple shooting

context. Hence, a theoretical analysis of algorithms such as Feasible-DDP remains

to be done. In contrast, SQPs benefit from a very exhaustive theoretical analysis,

convergence guarantees, and experimental validation in a variety of fields [143].

Furthermore, allowing the gaps to close in one step, as in [120], seems to go against

the spirit of the original formulation of multiple shooting with SQP [26].

2.4.3 Line search

Now that we essentially use SQPs with a QP that exploits the block sparsity,

we can leverage the vast literature of line search algorithms to select the right

step length (Eq. (2.6)). We compared both a filter line-search [62] and a merit

function-based line-search [143]. Let’s define the total cost of a trajectory, the total

gap violation, and the total constraint violation as:

ℓ(x[j],u[j]) =
T−1∑
k=0

ℓk(x
[j]
k , u

[j]
k) + ℓT (x

[j]
T), (2.17)

γ(x[j],u[j]) =
T−1∑
k=0

∥∥∥x[j]
k+1 − fk(x

[j]
k , u

[j]
k)
∥∥∥
∞
,

c(x[j],u[j]) =
T−1∑
k=0

∥∥∥∥[ck(x[j]
k , u

[j]
k)
]
−

∥∥∥∥
∞
+

∥∥∥∥[cT (x[j]
T)
]
−

∥∥∥∥
∞
.

35

With the filter line search, a candidate x[n+1],u[n+1] is accepted if:

∀j ≤ n, ℓ(x[n+1],u[n+1]) < ℓ(x[j],u[j]) (2.18a)

or ∀j ≤ n, γ(x[n+1],u[n+1]) < γ(x[j],u[j]) (2.18b)

or ∀j ≤ n, c(x[n+1],u[n+1]) < c(x[j],u[j]) (2.18c)

In contrast, the merit function is of the form:

ℓ(x[j],u[j]) + µγγ(x
[j],u[j]) + µcc(x

[j],u[j]), (2.19)

where µγ and µc are weights defined by the user. A step is accepted if the candidate

allows a decrease in the merit function. The downside of the merit function is that

the weight between each term has to be tuned, which can be cumbersome. On

the other hand, we found that the filter line search yielded good performances and

was more practical as no parameter tuning was required. In this filter line search,

the cost values, gap norm, and constraint violation of all the previous iterates are

stored and browsed. In our implementation, we provide the possibility of keeping

only a restricted number of iterates in memory and refer to this parameter as the

filter size. Although a filter keeping all the past estimates can help with problems

that require many iterations (e.g., to meet a strict tolerance), it can reasonably be

shortened or even discarded in practice for MPC applications. In our experience,

one can select a filter size of 1 without significant loss in convergence.

36

2.4.4 Termination criteria

The solver is terminated once the infinity norm of the KKT condition is below

a certain threshold. More precisely, the following termination criterion is used:

∥∥∇xL(x[n],u[n],λ[n],µ[n])
∥∥
∞ ≤ ϵSQP (2.20)∥∥∇uL(x[n],u[n],λ[n],µ[n])
∥∥
∞ ≤ ϵSQP∥∥∥x[n]

k+1 − fk(x
[n]
k , u

[n]
k)
∥∥∥
∞
≤ ϵSQP , 0 ≤ k < T,∥∥∥∥[ck(x[n]

k , u
[n]
k)
]
−

∥∥∥∥
∞
≤ ϵSQP , 0 ≤ k < T.∥∥∥∥[cT (x[n]

T)
]
−

∥∥∥∥
∞
≤ ϵSQP .

We use here the convergence criteria widely used in the optimization community

[143]. Note that we do not employ a real-time iteration scheme [48] as we found

in practice that letting the solver converge led to better experimental results than

re-planning faster with a single SQP iteration.

As mentioned in [143], λ[n+1],µ[n+1] are given by the Lagrange multiplier as-

sociated with (2.3). Note that we can compute them very efficiently due to the

recursions. In the unconstrained case, we can use (2.10c). In the constrained case,

we have,

λk = Vk∆̃xk + vk (2.21)

µk = yk (2.22)

where Vk, vk are derived from the Riccati recursions defined by Problem (2.15) and

where ∆̃xk, yk are the primal and dual solutions of the QP (at time k).

37

2.5 Experiments

In this section, we demonstrate the practical benefits of using a sparsity-

exploiting SQP implementation for nonlinear MPC with and without inequality

constraints. The solvers used in the benchmarks and experiments are open-sourced

in the mim solvers library2, which uses Crocoddyl [120] as a base software. Rigid-

body dynamics computations are done using the Pinocchio library [33] and its

analytical derivatives [31]. All the benchmarks and figures presented in this Chapter

can be reproduced using the dedicated repository StagewiseSQP3.

Firstly, we benchmark the performance of our tailored SQP in the absence of

constraints (Section 2.2) against other popular methods that use non-linear rollouts.

We show that our tailored SQP implementation performs as well and sometimes

better than other methods to solve challenging OCPs. Secondly, we further rein-

force this claim by deploying the tailored SQP in high-frequency nonlinear MPC

experiments on a torque-controlled manipulator.

Thirdly, we demonstrate the validity of the SQP approach with our tailored

ADMM implementation (Section 2.3) in the presence of nonlinear inequality con-

straints by deploying it on real hardware in MPC. Our experiments show that

the solver can satisfy many nonlinear equality and inequality constraints while

maintaining real-time solve rates. Finally, we study the importance of sequential

implementations of the SQP in the constrained case, and we benchmark the timings

of the proposed OSQP OCP solver with other state-of-the-art QP solvers.

38

0 20 40 60 80 100
Max. number of iterations

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f p
ro

bl
em

s s
ol

ve
d

DDP
FDDP (default LS)
FDDP (filter LS)
SQP

(a) Kuka reaching task with randomized ini-
tial state and niter ∈ [1, 100].

0 25 50 75 100 125 150 175 200
Max. number of iterations

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f p
ro

bl
em

s s
ol

ve
d

DDP
FDDP (default LS)
FDDP (filter LS)
SQP

(b) Quadrotor pose task with randomized
initial state and niter ∈ [1, 200].

0 100 200 300 400 500
Max. number of iterations

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f p
ro

bl
em

s s
ol

ve
d

DDP
FDDP (default LS)
FDDP (filter LS)
SQP

(c) Double pendulum swing-up task with
randomized initial state and niter ∈ [1, 500].

0 50 100 150 200 250 300
Max. number of iterations

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f p
ro

bl
em

s s
ol

ve
d

DDP
FDDP (default LS)
FDDP (filter LS)
SQP

(d) Humanoid taichi task with randomized
end-effector goal and niter ∈ [1, 300].

Figure 2.1: Percentage of problem solved as a function of the maximum number
of iterations allowed niter on 4 randomized unconstrained OCPs for the 4 solvers:
DDP, FDDP with default line-search, FDDP with filter line-search and our SQP.
Our SQP exhibits a faster and more robust convergence on difficult problems, such
as the humanoid taichi task.

39

2.5.1 Unconstrained case: Benchmarks

In this subsection, we compare the advantages and disadvantages of linear

and non-linear rollouts. As emphasized in Section 2.4.1, when only the dynamics

constraint is present, the efficient SQP formulation boils down to the GNMS

algorithm described in [68]. We propose for the first time to benchmark this

algorithm against state-of-the-art optimal control solvers, namely DDP [125] and

FDDP [120], on a set of difficult unconstrained OCPs, using a standard line-search

procedure and termination criteria drawn from the SQP literature.

2.5.1.1 Benchmark Setup

We present two benchmark setups that compare the convergence and average

iteration time of the following 4 solvers, namely DDP, FDDP using the default line-

search from [120], FDDP using the proposed filter line-search of Section 2.4.3, and

our SQP, on a set of increasingly difficult randomized problems. We summarized

the characteristics of these solvers (multiple or single-shooting, type of rollout,

and line-search) in Table 2.1. The classical single-shooting DDP and its multiple-

Multiple shooting Rollout Line-search
DDP No Nonlinear Goldstein

FDDP (default LS) Yes Nonlinear Heuristic [120]
FDDP (filter LS) Yes Nonlinear Filter [62]

SQP Yes Linear Filter [62]

Table 2.1: Solvers characteristics.

shooting variant FDDP (default LS) are the ones implemented in the Crocoddyl

library [120]. The FDDP (filter LS) was modified to incorporate the same filter

2https://github.com/machines-in-motion/mim_solvers
3https://github.com/machines-in-motion/StagewiseSQP

https://github.com/machines-in-motion/mim_solvers
https://github.com/machines-in-motion/StagewiseSQP

40

line-search as our tailored SQP implementation. We use the largest possible filter

size for both solvers, i.e., the maximum number of iterations.

To evaluate the performance of these solvers, the following OCPs are used:

• Kuka (nx = 14, nu = 7) : the task is to minimize the Cartesian distance to

an end-effector goal (3D reaching task in Cartesian space) under state (joint

positions and velocities) and control (joint torques) regularization.

• Quadrotor (nx = 13, nu = 4) : the task is to minimize the distance to a

desired pose (in SE(3)) under state and control regularization.

• Double Pendulum (nx = 4, nu = 1) : the task is to minimize the distance to

the upward equilibrium position under state and control regularization.

• Humanoid Taichi (nx = 77, nu = 32) : the task is to achieve a desired

left foot pose (in SE(3)) while maintaining balance on the right stance foot,

starting from a double foot support configuration, under state and control

regularization, and log-barrier state limits.

The Quadrotor, Double Pendulum, and Humanoid Taichi examples were copied

from the Crocoddyl library. Each problem is solved for 100 randomized initial

configurations (Kuka, Quadrotor, Double Pendulum) or end-effector goal (Humanoid

Taichi). The maximum number of iterations allowed niter depends on the problem.

For each problem, the solvers are warm-started with the same quasi-static solution.

Essentially, a gravity compensation torque is computed for the initial state of the

system and provided as an initial guess to the solver. We use the same termination

criteria, the KKT residual norm (2.20) with tolerance set to ϵSQP = 10−4 on all

problems. In order to reflect cases where the maximum number of iterations is hit

41

without reaching the desired tolerance, we use as a metric the number of solved

problems for a given maximum number of iterations. A problem is considered

”solved” if it reaches the KKT residual tolerance within the maximum number of

iterations allowed.

2.5.1.2 Benchmark results

The results obtained for the solver convergence study are shown in Figure 2.1.

On the Kuka example, all solvers exhibit a similar behavior. The advantage of

multiple-shooting over single-shooting becomes clear in the Quadrotor (Figure 2.1b)

and Double Pendulum (Figure 2.1c) examples. These two examples, along with the

Humanoid taichi (Figure 2.1d), also highlight clearly the benefit of using a filter

line-search in FDDP. Most importantly, the tailored SQP solves more problems

in fewer iterations than all the other solvers. In particular, it is clear from these

benchmarks that the linear rollout has an advantage over the nonlinear one - we

recall that FDDP (filter LS) (green curves) and SQP (blue curves) only differ by

their rollouts (nonlinear and linear respectively). In Figure 2.2, we report the

average time per iteration for each solver. This shows that each SQP iteration

takes about the same or slightly less time compared to the alternative solvers.

For MPC applications, the solver’s ability to converge to a desired tolerance

within a fixed time is critical because real-time constraints impose a limited com-

putation budget. In that respect, all experiments show that SQP is able to solve

more problems in fewer iterations than all other solvers while taking about the

same time per iteration. For instance, in difficult problems like the humanoid taichi

example, nearly 80% of the problems are solved by the SQP within 50 iterations,

while the FDDP (filter LS) requires almost 200 iterations to solve the same amount

42

Kuka Quadrotor Pendulum Taichi
Problems

100

101

Av
er

ag
e

tim
e

pe
r i

te
ra

tio
n

(m
s)

Average time per iteration

DDP
FDDP (default LS)
FDDP (filter LS)
SQP

Figure 2.2: Average time per iteration for each solver on the 4 benchmark problems
(Kuka, Quadrotor, Pendulum, Taichi)

of problems.

2.5.2 Unconstrained Case : MPC experiments

We implemented FDDP (filter LS) and SQP in MPC on the KUKA LBR14

iiwa to execute the task of tracking a circle with the end-effector. The cost function

includes state and torque regularization, and an end-effector position tracking

term. The robotic setup follows our previous work [102], where more details are

available. We used an MPC frequency of 500Hz, with an OCP discretization of

50ms, 10 nodes in the horizon, and a maximum number of SQP iterations niter = 5.

At each MPC cycle, the solvers are warm-started with the previous trajectory.

Although both solvers exhibited equal tracking performance, they differed in their

convergence speeds, which corroborates our benchmarks. Indeed, the cumulative

costs achieved are similar, but the SQP converges faster to its optimal solution, as

shown in Figure 2.3.

43

0e+00

1e-04

2e-04

3e-04

4e-04

5e-04

KK
T

re
sid

ua
l n

or
m

0 5 10 15 20 25
Time (s)

0

1

2

3

4

5

Nu
m

be
r o

f i
te

ra
tio

ns

SQP
FDDP (filter LS)
Tolerance

Figure 2.3: KKT residual norm and number of iterations for the circle tracking
task. Our SQP solver converges within 3 iterations while FDDP hits the maximum
number of iterations (niter = 5) without reaching the desired tolerance.

2.5.3 Constrained case : Robot Experiments

In this subsection, we first show the ability of our tailored SQP solver to solve

constrained multi-contact nonlinear OCPs on a simulated quadruped robot Solo12

[75]. Finally, we show that the proposed method can be used in MPC to satisfy

arbitrary constraints on a real robot.

2.5.3.1 Quadruped standing task with friction cones

The Solo [75] quadruped is tasked with tracking a desired CoM position while

maintaining its contact forces within the friction cone, i.e.,

∥FT∥2 ≤ µFN (2.23)

where FT , FN represent the tangential and normal forces, respectively. We use

250 nodes in the OCP, with a discretization of 20ms. The CoM must track a

44

0 1 2 3 4 50

1

2

3

4

5

FL
 fo

rc
e

ra
tio

0 1 2 3 4 5
Time (s)

0

1

2

3

4

5

HL
 fo

rc
e

ra
tio

Unconstrained
Constrained
Friction cone (=0.8)

Figure 2.4: Solo center-of-mass tracking task with friction cone constraints. The
continuous lines represent the ratio FT

FN
at the front left foot, and the gray dashed

line represent the friction cone constraint. Observe in the Fz plots the unconstrained
OCP solution (green) crossing the friction cone constraint while the constrained
OCP solution (blue) remains within the constraint.

circular trajectory of 13 cm diameter and 0.2 rad s−1 velocity. The QP absolute

and relative tolerances are set to 10−6, and the termination tolerance to 10−4. We

use the merit function line-search and the KKT residual termination criteria as

previously described. The same OCP was solved with and without constraint

(2.23). The solver converged in 34 iterations in the unconstrained case and in

31 iterations in the constrained case. Note that the merit function with default

parameter µγ = µc = 1 was used in this illustrative example, which seems to benefit

the solver’s convergence in the constrained case over the unconstrained case. The

accompanying video shows the corresponding motion, and snapshots are provided

in Figure 2.5. Figure 2.4 shows the ratio of tangential over normal forces of the

unconstrained and constrained solutions. One can see that the task cannot be

achieved without slipping when no constraint is enforced. Hence our tailored SQP

implementation can enforce nonlinear inequality constraints (Lorentz cones) while

also keeping the number of iterations low.

45

Figure 2.5: Snapshots of standing motion. The red arrows represent the contact
forces and the white cones are the friction constraint (µ = 0.8). In the 3rd and 4th

frames, one can see the tangential forces lying on the boundary on the friction cone.

0 5 10 15 20 25
Time (s)

−0.4

−0.2

0.0

0.2

0.4

0.6

Jo
in

t p
os

iti
on

 q
1 (

ra
d)

Constraint
Constrained
Unconstrained

Figure 2.6: Joint position q1 for the circle task in the constrained (blue) and
unconstrained case (green). The gray-shaded area represents the infeasible region.

2.5.3.2 MPC experiments setup

We deployed our tailored SQP implementation in MPC on the KUKA robot to

achieve various constrained tasks. In all the experiments, the MPC runs at 100Hz,

the OCP discretization is 50ms and the horizon has 10 nodes. We allow a maximum

of 4 SQP iterations and 50 QP iterations (i.e. 50 iterations of Algorithm 2 where ρ

is updated every 25 iterations). Relative and absolute tolerances for the QP are

set to 10−5 and 10−4. The size of the filter for the line-search is set to 1. The ρ

penalty parameter is not reset throughout the iterations, and the primal solution is

warm-started with the previous trajectory (no warm-start on the dual variables y

and z which are reset to 0).

46

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
Y (m)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Z
(m

)

Constraint
Reference
Measured

(a) The end-effector is constrained to lie
within the y > 0 half-plane.

−0.4 −0.2 0.0 0.2 0.4
Y (m)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Z
(m

)

Constraint
Reference
Measured

(b) The end-effector is constrained to lie
within the intersection of 4 half-planes.

Figure 2.7: End-effector position trajectories in the (y, z)-plane during the circle
tracking task, subject to nonlinear constraints in Cartesian space. The gray-shaded
areas represent the infeasible regions.

Figure 2.8: The SQP solver keeps the end-effector on a straight line constraint
(black dotted line) even during unexpected perturbations. The SQP solver is able
to rapidly find robot configurations needed to satisfy the constraints while tracking
the desired goal.

47

Our experiments focus on constrained circle tracking tasks: the robot must track

a circle with its end-effector while satisfying various constraints in the joint space

or in the end-effector space. The objective includes state and control regularization

terms and a term to follow a circle with the end-effector (3D task). We observed that

reducing the MPC frequency to 100Hz (vs 500Hz in the unconstrained experiments)

was beneficial since it allowed us to maintain a reasonable number of QP (50) and

SQP (4) iterations and thereby a good convergence.

2.5.3.3 MPC experiments results

In the first experiment, the robot must track the circle while keeping the position

of the first joint within [−0.05 rad,+0.05 rad]. The position of the constrained joint

is shown in Figure 2.6. Without the constraint, the circle tracking average absolute

error is lower (3.3 cm) than the constrained case (8.5 cm) but the constraint is

largely violated. Increasing the end-effector tracking cost weight in the constrained

case leads to an improved tracking performance but a more aggressive behavior on

the robot due to an increased constraint saturation.

In the second experiment, an end-effector (the center of the last link of the

robot) constraint was imposed during the circle task. Figures 2.7a, 2.7b show the

Cartesian space trajectories for circle tasks in which the end-effector is constrained

to lie within specific half-spaces. We observed that increasing the velocity of the

reference circle had the effect of smoothing out the edges of the square. This

behavior can be explained by the prediction horizon which enables the controller to

anticipate constraints: remaining some distance away from the constraint boundary

is the optimal way to minimize the objective while preventing constraint violation

in the future. This confirms the intuition that the horizon is crucial in constrained

48

dynamic tasks.

In the third experiment, the end-effector was constrained to remain on a vertical

line while tracking a circle (i.e. equality constraint Y = 0 in Figure (2.7)). In

addition to this, the robot was perturbed at arbitrary locations and times during

the experiments. The resulting behavior on the robot is shown in Figure 2.8. As

can be seen, the MPC solver is able to rapidly determine a robot configuration

that resists the applied force while keeping the end-effector on the constraint and

tracking the desired trajectory in the vertical direction. This result shows the

ability of the solver to satisfy tight nonlinear constraints.

All experiments are shown in the accompanying video. We also included a fourth

experiment in the video that forces the end-effector to remain on the horizontal

plane, even under external disturbances from a human operator. In that case,

the robot is again able to adapt its configuration automatically in order to satisfy

the constraint. Through these experiments, we confirm that arbitrary constraints

can be enforced at real-time rates, without having to re-define the task (i.e. no

re-tuning the cost function weights).

2.5.4 Constrained case : Benchmarks

We now discuss the performance of the proposed tailored ADMM. First, we

demonstrate the importance of sequential implementations as opposed to general

sparse algebra routines by benchmarking the iteration times of the proposed

OSQP OCP solver against OSQP [167] as the problem size varies. Second, we

benchmark the convergence timings of the proposed OSQP OCP solver against

OSQP and HPIPM OCP [65], a state-of-the-art solver tailored for OCPs.

49

10 20 30 40 50 60 70 80 90 100
Horizon length

0

10

20

30

40

50

60

70

80

Ti
m

e
[m

s]

OSQP_OCP
OSQP

(a) Compute time according to horizon
length for a 50 dimensional state.

10 20 30 40 50 60 70 80 90 100
State dimension

0

50

100

150

200

Ti
m

e
[m

s]

OSQP_OCP
OSQP

(b) Compute time according to state dimen-
sion for a horizon of length 50.

Figure 2.9: Comparison between the compute time of 25 iterations OSQP OCP
and OSQP.

2.5.4.1 Sequential implementation v.s. Sparse Algebra

We compare our proposed QP solver to its closest alternative - OSQP [167],

since OSQP uses ADMM with sparse linear algebra while our solver uses a tailored

ADMM that exploits stage-wise sparsity. We set up a benchmark where 100

constrained LQR problems (with random initial state) of increasing horizon length

(Figure 2.9a) and state dimension (Figure 2.9b) are solved. For each solver, we

measure the time needed to take 25 QP iterations. It is important to note that both

these solvers need not converge within the 25 iterations and we only focus on the

wall-clock time (convergence time is evaluated in the next subsection 2.5.4.2). As

shown in Figure 2.9, the proposed OSQP OCP solver displays a linear increase in

wall clock time as the problem size increases, unlike OSQP which grows non-linearly.

2.5.4.2 QP Solvers Timings - Setup

In this benchmark, we evaluate and compare the convergence of the following

QP solvers: OSQP OCP, HPIPM OCP, OSQP. We summarized the characteristics

of these solvers in Table 2.2.

50
Sequential Sparse Algebra Type

ADMM OCP Yes No ADMM
HPIPM OCP Yes No Interior Point

OSQP No Yes ADMM

Table 2.2: QP solvers characteristics.

To evaluate the performance of these solvers, the following OCPs are used:

• Kuka : same setup as in the unconstrained case but with a hard constraint

on the terminal end-effector position.

• Solo12 : same setup as in the constrained experiment presented in Sec-

tion 2.5.3.1.

• Humanoid Taichi : same setup as in the unconstrained case but with force

and torque constraints on the right foot.

Each problem is solved for 100 randomized settings. For the Kuka, we sample the

initial configurations, for the humanoid Taichi, the end-effector goal, for Solo12,

the friction coefficient. The QP tolerances are set to ϵabs = 10−4 and ϵrel = 0, and

we let the QP solver fully converge to that tolerance. The QP problem corresponds

to the first SQP iteration.

2.5.4.3 QP Solvers Timings - Results

OSQP OCP HPIPM OCP OSQP
Time Iter Time Iter Time Iter

Kuka 0.5 ± 0.6 76 ± 97 0.16 ± 0.03 4.1 ± 0.8 0.98 ± 0.53 60 ± 15
Solo 2.6 ± 0.3 50 ± 0 1.8 ± 0.57 5.7 ± 1.5 3400 ± 61 2200 ± 410
Taichi 35 ± 2.3 180 ± 0 57 ± 19 37 ± 12 656 ± 98 990 ± 170

Table 2.3: Mean solving time in milliseconds and number of QP iterations for
different problems

51

Table 2.3 shows the QP solving times and number of iterations for the 3 problems

and all solvers. The results once again show that solvers that exploit stage-wise

sparsity (HPIPM OCP and our OSQP OCP solver) converge to a solution quicker.

Further, OSQP OCP takes fewer iterations to converge for complicated OCPs like

Solo and Taichi, as compared to OSQP. We conjecture that this difference is due

to the difference in formulation of the OSQP OCP, i.e., we decompose the original

QP into two convex subproblems in ADMM. Indeed, this leads to directly handling

the dynamic feasibility constraints with a linear rollout in the QP (equation 2.13a)

and satisfies linear dynamic feasibility at each iteration of ADMM. On the contrary,

OSQP handles the dynamic feasibility as a general equality constraint and ensures

its feasibility at convergence (which usually takes several iterations) [167].

The two stage-wise exploiting solvers, HPIPM OCP and OSQP OCP perform

similarly. HPIPM OCP has better convergence on problems with smaller matrices

(Kuka and Solo examples), probably because it uses the BLASFEO [66] backend

for dense matrix operations, which is shown to outperform Eigen routines for

smaller matrices. When the matrices become large, like in the Taichi example,

the advantage of BLASFEO diminishes and our proposed QP solver converges

quicker. Overall, these results suggest that OSQP OCP has similar performance as

HPIPM OCP and the minor difference in performances stem from the dense matrix

algebra routines. Further, the author of HPIPM also notes that with the same

matrix backend, ADMM based methods can be faster than interior point methods

[64], especially for large problems when a reasonable solution is desired in a few

iterations. Note that the performance of matrix algebra routines turns out to be

critical to implement efficient solvers.

Overall, we would like to highlight that obtaining real-time closed-loop MPC

52

is possible with both HPIPM OCP and OSQP OCP, and our results suggest that

exploiting stage-wise sparsity is a major factor of efficiency. The OSQP OCP solver

has two advantages: it easily handles infeasibility just like OSQP and it can return

a reasonable solution in fewer iterations thanks to the convergence properties of

ADMM [27].

2.6 Discussion

The benchmark introduced in the unconstrained case questions what allowed

this improvement. We argue that FDDP appears to be a hybrid method laying

between single and multiple shooting. This idea comes both from our results on

the Humanoid taichi robot, where FDDP behaves like DDP and from the theory,

as it is known that once the gaps close in FDDP, they cannot re-open again.

Consequently, we believe that the improvement observed in the benchmark comes

from the multiple shooting formulation.

Our work follows the line of work started in the 1990s [51, 52, 146, 150, 166,

187, 189] showing that standard optimization tools can be implemented specifically

for OCPs by exploiting time-induced sparsity. We simply use the same tenets

with SQP and ADMM as they are well-established in the optimization community.

Additionally, ADMM has properties (easy to warm start and quick convergence to

few iterations) that benefit MPC [27]. However, we would like to insist on the fact

that the same principles could be applied to other optimization techniques. Future

work would be especially interesting to modify such state-of-the-art QP solvers to

exploit stagewise sparsity given that they outperformed OSQP, in general, [10, 157].

Finally, a direct by-product of the tailored implementation is the Riccati-like

53

gains that can also enforce the additional inequality constraints. This is a natural

consequence of using Riccati recursions to efficiently solve the sparse linear matrix

equation that appears in the QP solver. So far, we have not used these Riccati gains

on a real robot in MPC, however [163] showed encouraging results in simulation. A

study on their effect on control performance and constraint satisfaction remains to

be done on a robot.

During deployment, we usually early terminate the ADMM-based QP in the

interest of higher re-planning frequency (100Hz). A lower-quality solution seems

to be sufficient to ensure higher reactivity and compliance on the robot. One key

advantage of ADMM in this context is that the sub-QP solver can reach a reasonable

solution in a few iterations and also guarantee the availability of some solution

even when the constraints may be infeasible because it is based on the ADMM

algorithm [27]. Both of these are desirable in non-linear MPC where obtaining a

solution is essential during deployment.

2.7 Conclusion

A central message of this Chapter is that the existing nonlinear optimization

literature already provides sufficient tools to solve OCPs with and without con-

straints in real time and thereby achieve state-of-the-art nonlinear MPC on real

robots. We substantiated this message through a tailored, sparsity-exploiting SQP

formulation that provided a unifying framework clarifying the connections between

existing solvers from the robotics literature and a practical approach to achieving

state-of-the-art MPC. We demonstrated through various benchmarks and hardware

experiments that such a tailored SQP implementation outperformed state-of-the-art

54

solvers based on DDP on challenging unconstrained problems. We then showed that

it can efficiently solve arbitrary constrained nonlinear OCPs for MPC applications.

In particular, we could enforce many nonlinear constraints on a real robot in MPC.

In this Chapter, we presented a generic framework to solve efficiently constrained

OCP. However, in this form, MPC can exhibit local behavior. One reason is

that gradient-based nonlinear optimization is subject to local minima. Another

explanation is that the use of a short horizon can generate local behaviors. For

instance, in an obstacle avoidance task, the manipulator could get stuck due to a

too short horizon – staying in place could yield a lower cost than circumventing

an obstacle. More specifically, minimizing the joint torque regularization cost

instead of the distance to the target could be more beneficial to the overall cost.

In Chapter 3, we will show how to use function approximation to avoid such local

behaviors.

55

Chapter 3

Infinite-Horizon Value Function

Approximation for Model

Predictive Control

While MPC possesses strong theoretical guarantees, the real-time requirement

has limited the use of hard constraints and large preview horizons, which are

necessary to ensure safety and stability [76, 126]. In practice, practitioners have

to carefully design cost functions that can imitate an infinite horizon formulation,

which is tedious and often results in local minima. In this Chapter 1, we study

how to approximate the infinite horizon value function of constrained optimal

control problems with neural networks. We then demonstrate how to use this value

function to endow MPC with global behaviors on an obstacle avoidance task with

an industrial manipulator.

The theoretical benefits of an infinite horizon formulation have been extensively

1This chapter is adapted from the following paper: A. Jordana et al. ”Infinite-Horizon Value
Function Approximation for Model Predictive Control” Submitted to RAL, 2024

56

studied [36, 76, 88, 127]. Unfortunately, the general case is intractable. Hence,

efforts have concentrated on the constrained linear quadratic regulator [19, 74, 165].

In the general case, RL provides a way to approximate the solution [22, 168].

In the discrete action setting, Deep Q-learning is a popular tool [131]. In the

continuous case, actor-critics such as DDPG [116] or SAC [77] allow learning

simultaneously a policy and a value function. However, despite recent progress [35,

194], incorporating hard constraints in those formulations remains challenging.

Also, RL algorithms [168] typically use a discount factor. However, the global

stability guarantee of infinite horizon MPC was established in the non-discounted

setting [76, 126]. Consequently, we study the non-discounted setting with hard

constraints which, to the best of our knowledge, remains understudied in the RL

community.

The idea of combining MPC and function approximation is not novel and has

fostered a lot of research in the robotics community. The seminal work of Atkeson

[7] explored how to use local trajectory optimization together with a global value

function. Since then, an extensive amount of work has shown the benefits of using

TO with learning to either speed up the training of value functions and policies or

improve the controller’s performance at test time [3, 70, 80, 83, 105, 109, 112, 117,

132, 138, 147, 191, 195]. A limitation of these works is their inability to consider

hard nonlinear constraints. In practice, constraints have to be enforced softly

using penalty terms in the cost function. However, this approach requires tedious

weight tuning and can hardly guarantee safety. In this Chapter, we show how the

known advantages of combining MPC and RL can be obtained while enforcing

hard constraints. In addition, we demonstrate how this combination can provide a

controller maintaining safety even outside the training distribution.

57

More recently, [175, 182] demonstrated the benefits of using online constrained

optimization with an approximate value as a terminal model in the context of

locomotion. In these works, the authors propose to learn the value with a local

TO solver using a long horizon. Consequently, at test time, the controller remains

local. In contrast, we use value iteration combined with local TO to approximate

the infinite horizon value function, and we demonstrate the ability of the method

to avoid local minima.

In this Chapter, we propose to approximate the infinite horizon value function

of constrained OCP and use it as a terminal cost function of a Model Predictive

Controller. The contributions of this Chapter are threefold:

• First, we demonstrate how a local gradient-based solver allows the use of

value iteration to approximate the optimal value function of a constrained

OCP with an infinite horizon.

• Second, we provide an experimental study showing how the use of trajec-

tory optimization can compensate for the inaccuracies of the value function

approximation.

• Third, we demonstrate the benefits of combining MPC with value function

approximation on a reaching task with obstacle avoidance on an industrial

manipulator. More precisely, we show how the use of the value function

allows avoiding local minima to which MPC is subject and demonstrate how

the method remains safe by ensuring hard constraints outside the training

distribution of the value function. To the best of our knowledge, this is the

first demonstration of MPC using a learned global value function with hard

constraints deployed on a robot at real-time rates.

58

3.1 Infinite horizon MPC

Here, we are interested in the infinite-horizon constrained optimal control

problem:

V (x) = lim
T→∞

min
u0,u1,...uT−1

T−1∑
k=0

ℓ(xk, uk) (3.1a)

s.t. x0 = x (3.1b)

xk+1 = f(xk, uk) (3.1c)

c(xk, uk) ≥ 0 (3.1d)

Here V is the infinite horizon value function. The state x belongs to Rnx and the

control u to Rnu . The dynamic function f maps Rnx ×Rnu to Rnx . The constraint

function c maps Rnx × Rnu to Rnc . The cost function ℓ maps Rnx × Rnu to R+.

Similarly to [24], to ensure the existence of states yielding a finite value function,

we consider that the set of stationary points yielding a zero cost,

G = {x | ∃u s.t. ℓ(x, u) = 0, x = f(x, u), c(x, u) ≥ 0} (3.2)

is not empty. Computing the value function or its associated optimal policy is

intractable in general. However, RL provides tools to find an approximation.

Let’s denote Ω, the space on which the value function is well-defined and finite.

For any state x ∈ Ω, the value function satisfies the Bellman equation:

B (V) = V, (3.3)

59

where B is the Bellman operator, defined by:

B (V) (x) =min
u

ℓ(x, u) + V (f(x, u)) (3.4a)

s.t. c(x, u) ≥ 0 (3.4b)

f(x, u) ∈ Ω (3.4c)

Here, Eq (3.4c) ensures recursive feasibility. In this Chapter, we focus on problems

where the set Ω can be expressed analytically, which encompasses many problems.

For instance, if the constraint is of the form c(u), then Ω = Rnx . If the constraint is

of the form c(x), then Ω = {x ∈ Rnx |c(x) ≥ 0}. In the more general case where the

constraint is a function of both the state and the control, the set Ω is not tractable,

and we would have to rely on approximation techniques [11, 50]. However, this is

beyond the scope of the Chapter.

In the non-discounted setting, the Bellman equation has multiple solutions.

Indeed, if V is a solution, then V + β (where β is a constant) is also a solution.

Therefore, we additionally require that the value function should be zero on

stationary points, yielding zero cost. More precisely,

∀x ∈ G, V (x) = 0. (3.5)

The idea of value iteration is to find a stationary point to the Bellman equation by

iteratively applying the Bellman operator:

Vk+1 = B(Vk). (3.6)

Under the assumption that the set G is not empty, it can be shown that Vk converges

60

to V pointwise [24, 82].

3.2 Approximate infinite horizon MPC via func-

tion approximation

3.2.1 T -step optimal lookahead problem

In this Chapter, we propose to combine online and offline decision-making by

using the T -step optimal lookahead problem [21] online. The idea is to perform

MPC by solving an OCP at each time step, using an approximate value function

as a terminal cost function. More precisely, given a state x, we aim to find the

optimal action by solving:

min
u0,u1,...uT−1

T−1∑
k=0

ℓk(xk, uk) + Vθ(xT) (3.7a)

s.t. x0 = x (3.7b)

xk+1 = f(xk, uk) (3.7c)

c(xk, uk) ≥ 0 (3.7d)

xT ∈ Ω (3.7e)

Here, Vθ is the value function approximation. Here, we consider Vθ to be a neural

network parameterized by weights θ. At each time step, the first optimal control

input, u⋆
0, is applied to the system, and the other controls are disregarded. In

the end, the policy, π⋆(x) = u⋆
0, depends on the horizon T and the approximated

value function Vθ. In continuous action space, RL algorithms rely on a function

approximation of the policy [168]. In contrast, we solve Problem (3.7) online.

61

The benefit of this approach is that the model used during the first T steps of

the optimization can reduce the inaccuracies of the value function and guarantee

stability [23, 107]. Furthermore, this ensures hard constraint satisfaction despite

the use of the approximated value function.

3.2.2 Value function approximation

In this section, we show how to use value iteration to approximate the value

function of an infinite-horizon constrained OCP by neural networks. To minimize

the Bellman equation (3.4), we propose to use a local gradient-based solver. To

reduce the required number of value iterations (i.e. iterations of the Bellman

operator), we can apply the minimization over an arbitrary horizon T . More

precisely, we can use trajectory optimization to directly solve:

Vk+1 = B[T] (Vk) (3.8)

where B[T] is the Bellman operator over a horizon T .

B[T] (V) = B ◦ . . . ◦ B︸ ︷︷ ︸
T times

(V) (3.9)

Indeed, it can be shown that iterating T times the Bellman operator is equivalent

to solving an OCP of horizon T , precisely as in Problem (3.7). Intuitively, this

should allow us to perform T times fewer value function iterations.

We propose to fit the approximated value function at each Bellman iteration

in a supervised way. Note that this approach can, therefore, be considered as

an instance of Fitted Value Iteration (FVI) [22, 136] adapted to the constrained

62

and deterministic setting. More precisely, at iteration k, given a value function

Vk, we sample n states, {xj}1≤j≤n and solve the n associated OCP with the

corresponding initial condition and with Vk as a terminal cost. Then, we train in a

supervised way such that Vθ maps xj to B[T] (Vk) (xj). Furthermore, to ensure that

∀xs ∈ G, Vθ(x
s) = 0, we sample m stationary points and {xs

j}1≤j≤m and minimize

the value function at those points with the Mean Squared Error (MSE). In the end,

we minimize the following loss:

n∑
j=1

∥Vθ(xj)− B[T] (Vk) (xj)∥22 + α
m∑
j=1

∥Vθ(x
s
j)∥22, (3.10)

where α is a penalty parameter. To create the targets, we solve Problem (3.7). To do

so, we use the stagewise Sequential Quadratic Programming (SQP) implementation

introduced in [95]. This solver can handle hard constraints and exploits the

time sparsity of the problem by using Riccati recursions in order to guarantee a

linear complexity with the time horizon and quadratic convergence. Algorithm 3

summarizes the method.

Minimizing (3.7) with a gradient-based solver requires the derivatives of the

neural network. More specifically, the SQP approach requires the gradient and

Hessian of the terminal cost function. To circumvent deriving twice a neural

network, we use the Gauss-Newton approximation and define the value function as

the squared L2 norm of a residual. More precisely:

Vθ(x) =
1

2
∥fθ(x)∥22 (3.11)

where fθ is a neural network whose output lives in Rd where d is a hyperparameter.

63

Algorithm 3: Value Iteration

Input: dynamics f , cost ℓ, constraint c, horizon T , network parameters θ
1 Initialize V1

/* Main value iteration loop */

2 for k ← 1 to N do
/* Generate data */

3 for j ← 1 to M do
4 Sample xj

5 Compute B[T] (Vk) (xj) by optimizing (3.7)

6 Create dataset: D = {(xj,B[T] (Vk) (xj))j}
/* Fit value function with SGD */

7 for j ← 1 to P do
8 Sample batch from D
9 Apply gradient descent with loss (3.10);

10 Vk+1 ← Vθ

Output: VN+1

Consequently, using a Gauss-Newton approximation, we have:

∂xVθ(x) = ∂xfθ(x)
Tfθ(x) (3.12a)

∂2
xxVθ(x) ≈ ∂xfθ(x)

T∂xfθ(x) (3.12b)

where ∂fθ(x) ∈ Rd×nx is the Jacobian matrix of fθ evaluated in x. Note that this

formulation also has the advantage of encoding the positivity of the value function.

For numerical optimization to be performed efficiently, it is crucial to obtain an

accurate Jacobian of the value function. While [147] investigated the use of Sobolev

learning [43], we found that using tanh activation function and an appropriate L2

regularization yielded accurate Jacobians of the network and was sufficient to ensure

convergence of the SQP in few iterations. Furthermore, we find that initializing V1

to the zero function improves the training. To do so, at the first value iteration, we

solve the OCP without a terminal cost function.

64

In order to generate trajectories that are similar to the one encountered at

deployment, we rollout trajectories to generate more data. More specifically, after

solving Problem (3.7), x1 is added to the dataset by solving Problem (3.7) using x1

as an initial condition, and we iterate until either the goal or a maximum number

of iterations is reached. In other words, Problem (3.7) is used as an MPC controller

to collect additional data. We find this especially relevant on complex examples

where the sampling distribution does not cover well the large state space.

3.3 Experiments

In this section, we present three problems of increasing complexity. The first

two examples are used to illustrate the ability of the method to approximate the

infinite horizon problem with a finite horizon and an approximate terminal value

function. Lastly, we study a reaching task on an industrial manipulator with an

obstacle to demonstrate the scalability of the method. In order to handle a moving

scene, the value function is conditioned to the goal of the reaching task and the

obstacle pose. First, we provide an analysis of the impact of the horizon both at

train and test time. Then, we present results from real experiments.

For all experiments, we use the SQP implementation introduced in [95]. During

the training, we solve each OCP in parallel on the CPU. Note that this is crucial

to obtain reasonable training times.

3.3.1 Toy Problem 1: Constrained Simple Pendulum

The first test problem we consider is the swing-up of a simple pendulum with

torque limits. We illustrate how a finite horizon with an approximate value function

65

as a terminal cost allows us to approximate the infinite horizon MPC. The state is

x =

[
θ, θ̇

]T
where θ denotes the orientation of the pendulum. The dynamics are

defined by applying Euler integration to the following law of motion:

θ̈ = − g

L
sin(θ) (3.13)

The goal is to bring the pendulum to the upward position, which is incentivized

with the following cost:

ℓ(x, u) = cos(θ) + 1 + 0.01θ̇2 + 0.001u2 (3.14)

Lastly, the control input is constrained to be within [−2, 2] which makes it impossible

to swing up the pendulum without several back and forth.

We sample θ uniformly in [−π, π] and θ̇ uniformly in [−6, 6]. The number of

sample points at each value iteration, n, is set to 500, and the number of goals

sampled m is set to 1 as there is only one state in G. We consider a horizon of

length T = 10 and perform 1000 value iterations. At each iteration, we perform

80 SGD steps using Adam with default parameters and a weight decay of 10−4.

Lastly, we set α = 1. The network is a three-layer MLP with 64 neurons and an

output size of d = 64. In the end, the training lasts 2 minutes and 40 seconds.

Figure 3.1 shows the approximated value function. As expected, the value function

outputs its highest value when the pendulum points downwards without velocity,

i.e., x =

[
0, 0

]T
.

Figure 3.2 shows the behavior of the MPC controller for different horizon lengths

using the approximated value function as a terminal cost. The quality of the control

increases as the horizon length increases. This can also be seen by looking at the

66

Figure 3.1: Approximated infinite horizon value function

final cumulative cost. The longer the horizon, the more optimal the controller is.

For T = 1, the cost is 4.57, for T = 10, the cost is 4.50 and for T = 20, the cost

is 4.41. This illustrates how solving online the OCP introduced in Equation (3.7)

compensates for the approximation error of the value function.

3.3.2 Toy Problem 2: Constrained point

In this second toy example, we illustrate the ability of the method to avoid local

minima to which is prone MPC. We consider a 2-dimensional point that has to

move around an obstacle to reach a target. The state is denoted by x =

[
x1, x2

]T
,

and the control u denotes the velocities of x1 and x2. The dynamics are defined in

67

Figure 3.2: Rollout of MPC controllers with different horizon lengths using the
learned value function as a terminal cost.

the following way:

xt+1 = xt +∆tut (3.15)

where ∆t is set to 0.02. The cost function is defined by:

ℓ(x, u) = ∥x− x⋆∥22 + 0.1∥u∥22 (3.16)

The constraints are defined by the distance between the point and two capsules that

define the obstacle, as illustrated in Figure 3.3. In this experiment, we sample x

uniformly in [−1, 1]× [−1, 1] and reject states inside the obstacles. The number of

point samples at each value iteration, n, is set to 2500 and we augment the dataset

with the last state of each trajectory. The number of goals sampled m is set to 1

as there is only one state in G. We consider a horizon of 10 and perform 100 value

iteration using α = 1. Lastly, at each iteration, we perform 2000 SGD step using

68

Adam with default parameters and a weight decay of 10−4. The network is a three-

layer MLP with 32 neurons and an output of size d = 32. In the end, the training

lasts 12 minutes. The increase of time compared to the previous experiment is due

to the implementation of the model’s dynamics in Python. Figure 3.3 shows how

using the learned value function as a terminal cost allows bypassing the obstacle in

order to reach the goal. Without this learned value function, the controller would

get stuck in the inner corner of the obstacle.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x 2

Figure 3.3: Trajectories avoiding the local optima for different initial conditions.
The red dot represents the target x⋆.

69

3.3.3 Influence of the horizon

At train time In this section, we study the influence of the horizon on the

training of the value function. We consider a reaching task with the 7-DoF Kuka

iiwa robot without constraints in order to extract the ground truth infinite horizon

value function. We fix the last joint and consider a 12-dimensional state containing

the joint positions and velocities. The OCP includes an end-effector target reaching

cost, joint velocity regularization, and joint torque regularization costs. In this

unconstrained setting, the ground truth value can be approximated by the gradient-

based solver with a large horizon, e.g. T = 200. At each value iteration, we collect

10000 trajectories of length 10 by sampling the initial configuration uniformly

within the joint and velocity bounds of the robot. Then, we perform 16 epochs.

Figure 3.4 shows the MSE between the learned value and the ground truth during

training. The larger the horizon is, the faster the algorithm converges to the ground

truth. Note that the differences in training time are negligible as most of the time

is spent on the SGD to fit the network.

At test time In this study, we show that the use of trajectory optimization online

allows us to compensate for the value function approximation error due to learning.

We use the same setup as in the previous section and show that at test time, a

longer horizon helps reduce the running cost. We perform value iteration with a

horizon of 10 and use the same parameters as in the previous section. Furthermore,

we illustrate that the improvement due to the horizon is not specific to our training

procedure but due to the limitation of the neural network’s expressivity. To do

so, we train in a supervised way the value function with 100000 ground truth

trajectories of length 10. We use the same number of SGD steps as in the overall

70

0 1 2 3 4 5
Value iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
Va

lu
e

fu
nc

tio
n

er
ro

r
T = 1
T = 2
T = 5
T = 10
T = 15
T = 20

Figure 3.4: Error between the ground truth and the learned value function during
training for various horizon length. The larger the horizon in Eq (3.7) is, the faster
the algorithm converges to the ground truth.

value iteration learning procedure; the test time performance of this network can

be considered as an upper bound on the one of the value iteration network. Lastly,

using the ground truth data, we train in a supervised way a policy mapping states

to torques (while removing the gravity compensation). Figure 3.5 shows the cost

error between various controllers and the ground truth infinite horizon controller.

It can be seen that for both value functions, increasing the horizon improves the

performance. Also, we can see that the value iteration achieves a performance that

is close to the supervised value, which was provided the ground truth values.

3.3.4 Experiments on a manipulator

3.3.4.1 Setup

We validated the proposed approach on the KUKA iiwa LBR 1480 in target

reaching/tracking and obstacle avoidance tasks. We used a motion capture system

71

0 4 8 12 16 20
Horizon length

10−3

10−2

10−1

100
Co

st
 e

rro
r

Policy (supervised)
VF (supervised)
VF (VI)

Figure 3.5: We run 1000 MPC simulations starting from random initial states with
increasing horizon for each controller. Horizon 0 corresponds to the policy.

(VICON) to track the targets and obstacles. The robot receives joint torque

commands and a PD joint state reference at 1 kHz through the FRI. The overall

control law applied on the real robot reads

τ = u⋆
0 + PD(x̂, x⋆

1) (3.17)

where u⋆
0 and x⋆

1 are the optimal control input and the predicted state respectively

(computed by the MPC at 100Hz) and x̂ is the measured state of joint positions

and velocities, controlled at 1 kHz by the joint PD

PD(x̂, x⋆
1) = −KP (q̂ − q⋆1)−KD(ˆ̇q − q̇⋆1) (3.18)

We use KP = [150, 150, 100, 100, 50, 10, 10] and KD = [25, 25, 20, 20, 14, 6, 6]. The

measured position is directly read from the robot’s encoders, while the velocity is

estimated by finite differences. Note that the last joint (wrist ”A7”) is blocked,

72

i.e., only controlled by the PD and not part of the model, as it speeds up learning

and is not necessary for the end-effector tasks under study (the robot is already

redundant for the tasks with 6-DoF).

The obstacle we consider is a thin rod of length 76 cm. To enforce collision

avoidance, we cover the robot with capsules and define the distance between the rod

and the capsules, as well as between the table and the capsules, as hard constraints.

In total, this represents 14 constraints.

In order to deploy the value function on the real system, we condition the

network to both the target position and the obstacle pose. The network is a 4-layer

MLP with 64 neurons per layer and a residual output of dimension 64. The state

is sampled within 70% of the robot’s joint and velocity range, and this range is

used as a hard constraint on the state in the OCP. The target’s Cartesian position

is sampled within the following bounds [0.45, 0.75]× [−0.2, 0.2]× [0.15, 0.5]. Also,

we filtered outlier state samples by rejecting those for which the end-effector lies

outside of those bounds, as these are outside the robot’s workspace. Obstacle poses

are sampled within a 10 cm cube in front of the robot. We also randomized slightly

the orientation through a uniform sampling of the Euler angles within the bound

[−0.1, 0.1]. Lastly, we reject the triplets (state, target, obstacle) for which the robot

is in collision with the obstacle or for which inverse kinematics has no solution for

the given goal. We found that in this form, this sampling distribution yielded a

majority of simple cases, i.e. tasks where the TO can find an optimal path to the

goal without getting stuck in local minima. Therefore, to make the distribution

more meaningful and representative of the scenario encountered on the real system,

we additionally rejected triplets where both the target and the end-effector were

above the rod.

73

We consider a horizon of length T = 5 and we perform 500 value iterations with

α = 0.01. At each iteration, we collect a dataset by sampling 1000 triplets and

rolling out trajectories up to a horizon of length 60 or until the robot reaches the

target. The target is considered to be reached whenever the running cost is below

0.1. Then, we perform 16 epochs using Adam with a learning rate of 0.0004 and a

weight decay of 10−5. The training lasts 3 h 20min on CPU only.

During deployment, the learned value function is used as a terminal cost in

the MPC, while the baseline MPC has no terminal cost. The horizon used is

T = 10 nodes, with an OCP discretization of ∆T = 50ms and a semi-implicit

Euler integration scheme. The maximum number of SQP iterations is set to 6, the

termination tolerance to 10−4 and the maximum number of QP iterations to 200.

The OCP used in the experiments includes a non-collision constraint and state

limits (box constraints). The non-collision constraints are defined on all collision

pairs existing between the robot links and the rod / table.

3.3.4.2 Pick-and-place with static obstacle

We compared the performance of the proposed approach against the default

MPC on a pick-and-place task with a static obstacle. The robot must alternatively

reach two end-effector positions while avoiding collision with a fixed rod laying in-

between the targets (see Figure 3.6). Figure 3.7 shows the end-effector trajectories

of both controllers. It can be seen that the MPC with value function reaches the

target (by finding a path moving the end-effector above the rod) while the default

MPC remains stuck in a local minima (trying to go underneath the rod). This

behavior can be further understood from Figure 3.8 which shows the cumulative

cost over the experiment. The MPC with value function achieves a lower cost since

74

Figure 3.6: Snapshots of pick-and-place task with static obstacle avoidance for
the default MPC without value function (bottom) and the proposed MPC with
value function (top). The green dots represent the end-effector targets that must
be reached alternatively while avoiding collision with the black rod placed in the
center.

it eventually reaches the target. But interestingly, this controller initially increases

its cost faster than the default MPC. This is explained by higher velocity and

torque regularization cost residuals due to the obstacle avoidance motion. Hence

this experiment shows the ability of the proposed controller to reason more globally

thanks to the value function guidance. Indeed, the default MPC remains stuck in a

local minima and must trade off the task completion against constraint satisfaction.

In contrast, our approach is able to both achieve the task and avoid collision with

the rod by choosing a different path that initially increases the cost. It is important

to remind that both controllers use the same warm-start; the only difference is the

terminal cost used.

3.3.4.3 Target tracking with static obstacle

In this experiment, we show the ability of our approach to track a moving target

while satisfying obstacle avoidance constraints. We use a small cube tracked by

75

4e-01

5e-01

6e-01

7e-01

8e-01

X
(m

)

-2e-01
-1e-01
0e+00
1e-01
2e-01

Y
(m

)

0 2 4 6 8 10
Time (s)

2e-01

3e-01

4e-01

5e-01

Z
(m

)

VF
No VF
Target

Figure 3.7: End effector trajectory. The robot must reach a target on the over
side of the rod marked by the green dots, while avoiding the rod (black dot). The
proposed approach (blue) can achieve the task by choosing a path going above the
rod, while the default MPC (red) remains stuck in a local minima (trying to go
underneath the rod).

the motion capture system to define a moving target. The video shows how the

controller can go around the obstacles when the cube is moved from one side to

the other of the obstacle. Figure 3.9 depicts the constraints satisfaction between

the rod and the capsules.

3.3.4.4 Target tracking with dynamic obstacle

Lastly, we illustrate in the video the ability of the method to deal with out-of-

distribution orientation of the rod as well as unexpected disturbances. While it can

be seen that the controller is no longer able to systematically avoid local minima

due to the obstacle, the hard constraints are maintained. Intuitively, far from the

training distribution, the approximated value function is not very meaningful and

cannot provide a way to avoid the obstacle. However, the model-based trajectory

76

0 2 4 6 8 10
Time (s)

0e+00

2e+02

5e+02

8e+02

1e+03

1e+03

co
st

VF
No VF

Figure 3.8: Cumulative cost. The proposed approach (blue) achieves a lower cost
by avoiding the rod and reaching the target.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Di
st

an
ce

 (m
)

L2
L3
L4_0
L4_1
L5
L6_0
L6_1
L7
Constraint

Figure 3.9: Target tracking with static obstacle. Collision distance between the
robot’s links (approximated as capsules) and the obstacle (moving rod).

optimization maintains the system safe.

3.4 Discussion

While value iteration is guaranteed to converge [24], this relies on the assumption

that the minimization in Problem (3.7) is global. However, we use a gradient-based

solver which can be subject to local minima. Intuitively, the larger T is, the more the

solver is prone to local minima. In practice, we found that tuning appropriately T

was enough to get VI to converge. In the end, the choice of T regulates the trade-off

77

between the efficiency of the local solver and the global property of value iteration.

Lastly, we have investigated the use of various random warm-starts to search for

the global solution; however, the convergence speed-up did not compensate for the

additional computational time. Nevertheless, this remains an interesting direction

to explore further.

Another limitation of our method is that the gradient-based solver requires

a smooth neural network. This constrains the learning architecture and training

parameters. More specifically, the SQP solver could not handle a network with

ReLu activation and required an appropriate tuning of the weight decay. Without

weight decay, the network would overfit and the solver’s number of iterations would

diverge. To circumvent the issue, it would be interesting to investigate the use of

zero-order methods, which have recently shown promising results [113, 190].

One of the key assumptions of the work is the tractability of the feasible set

Ω. Although this assumption encompasses a wide set of problems, it would be

interesting to study how to generalize to any type of constraint. A naive approach

could be to first approximate Ω with other methods such as [11, 50] and then apply

value iteration. However, it would be interesting to combine those two steps.

This work focuses on the non-discounted setting because this is the original

MPC formulation that can guarantee stability [76, 126]. Arguably, using a non-

discounted setting requires a cautious design of the problem as it is crucial to

ensure that the goal states achieve zero cost. Furthermore, while [24, 82] proved

the convergence of value iteration in the non-discounted setting, it is still not clear

how to guarantee convergence while approximating the value with neural networks.

In contrast, popular RL algorithms usually use a discount factor [168]; it would be

interesting to study the impact of the discount parameter during training. However,

78

it is not clear if the stability guarantees of the infinite horizon [76] will be preserved

in that setting.

3.5 Conclusion

We have introduced a way to combine constrained TO with RL by using a

learned value function as a terminal cost of the MPC. We have demonstrated the

benefits of the proposed approach on a reaching task with obstacles on an industrial

manipulator. In contrast to traditional MPC, by approximating an infinite horizon

OCP, the method can avoid complex local minima. Furthermore, in contrast to

RL, the online use of TO allows us to gain accuracy as it can leverage online the

model of the robot.

Chapter 2 and 3 demonstrated how to incorporate safety and global optimality

in MPC. However, we have so far assumed the state to be known. In practice,

we only have access to sensor information. In the next Chapter, we show how

online estimation can be used to adapt the MPC model directly from force sensor

information.

79

Chapter 4

Force Feedback Model-Predictive

Control via Online Estimation

Nonlinear model-predictive control has recently shown its practicability in

robotics. However, it remains limited in contact interaction tasks due to its

inability to leverage sensed efforts. In this Chapter 1, we address this issue and

show that standard estimation tools [171] together with a reformulation of the

optimal control problem, can provide a simple yet effective framework to achieve

force-output-feedback MPC.

Force control techniques are classically divided into direct force control and

indirect force control [177]. A full introduction is out of the scope, so we only

provide here a brief overview and refer the reader to the concise introductory review

on active compliant control proposed in [156].

1This chapter is adapted from the original publication : A. Jordana⋆, S. Kleff⋆, et al. Force
feedback Model-Predictive Control via Online Estimation. IEEE International Conference on
Robotics and Automation (ICRA), 2024. This work is the result of a collaboration with equal
contribution between Armand Jordana and Sebastien Kleff. In particular, the dissertation’s
author (Armand Jordana) contributed to the development and implementation of the algorithms
as well as the hardware experiments.

80

Direct methods attempt to regulate the force explicitly using measurement

feedback, typically in an integral controller - which is historically considered the

best basic strategy for force tracking [178]. It can be combined with motion feedback

in complementary task directions [149], or in parallel [38]. While the use of explicit

force feedback enables high accuracy tracking, the artificial decoupling of force

and motion tasks hides potential conflicts [54, 160] or phenomena such as contact

friction [193] and exchange of mechanical work [86].

On the other hand, indirect methods, such as impedance control [85] or admit-

tance control [140, 185], aim at regulating the dynamic relationship between force

and motion. While this allows generating stable and compliant contact interactions,

such techniques are mainly limited by their force tracking capability: since the

force is controlled indirectly through motion regulation, the tracking performance

depends on a priori unknown environment parameters [58, 96, 158, 159].

More recently, MPC has shown its ability to accommodate conflicting objectives

through constrained nonlinear optimization [59]. Much research has focused on

introducing MPC into direct [100, 123] and indirect [16, 69, 99, 130, 181] force

control methods, mainly motivated by its ability to satisfy constraints. In contrast

to [16, 69, 100, 103, 123], the proposed approach does not require a contact force

dynamics model, which greatly simplifies the optimization. Unlike [99, 130, 181],

we use a force sensor to achieve explicit force tracking rather than impedance/ad-

mittance regulation.

Estimation can also be used to improve performance in force tasks. In [154],

external forces are estimated with a centroidal model. In [4], a state-dependent

force correction model is adapted online. Closer to our work, [110] proposed an

active Kalman observer in MPC to reject unmodeled disturbances at the input

81

level, which can be viewed as a form of model-reference (direct) adaptive control.

However, those lines of work do not consider the full dynamics model.

In this Chapter, we propose a novel MPC formulation that allows exploiting

direct feedback from force sensors. We show that simple contact models and

standard estimation tools allow incorporating force feedback in MPC and achieving

state-of-the-art performance. We claim that force feedback in MPC is not as

challenging as it seems and that it solves many issues: it circumvents tedious

modeling of complex phenomena (contact, friction, etc.), boosts the performance of

classical MPC in contact tasks, and does not conflict with optimization, contrary

to traditional force control methods.

We propose to use force measurements to estimate online the mismatch between

the robot’s dynamics model and measurements. This mismatch is used to correct

directly the predictive model or the control objective. This idea resembles that

of indirect adaptive control [6], where a model of the plant is identified online to

adapt the controller’s parameters. Our approach allows high-quality force tracking

accuracy in challenging interaction tasks. Our main contributions are:

• a new framework affording direct force feedback control inside nonlinear MPC

based on online estimation and feedback linearization

• a systematic comparative experimental study of our force feedback MPC

against traditional techniques.

In particular, we demonstrate that the proposed approach outperforms integral

control: it benefits from the same force tracking capability without impeding

the benefits of MPC. In particular, in contrast to integral control, our approach

maintains or improves the MPC running cost performance. It also has the advantage

82

of being conceptually simple and cheap to implement with existing tools and

software.

4.1 Background: MPC with rigid contact

In this section, we recall the classical MPC formulation for torque-controlled

robots under rigid contacts, and point out its inherent inability to provide force-

feedback policies.

4.1.1 Classical model-predictive control

MPC solves online the Optimal Control Problem (OCP)

min
x(.),u(.)

∫ T

0

ℓ (x(t), u(t), t) dt+ ℓT (x(T)) (4.1)

s.t. ẋ(t) = f(x(t), u(t))

where x(0) = xm is the initial (measured) state, f the dynamics model, and ℓ, ℓT

the running and terminal costs. Note that hard constraints on the state and control

can be added, as soft penalties or hard constraints - which may be more challenging

for real-time applications. This OCP is transcripted into a non-linear program, i.e.

the cost and dynamics are discretized using an Euler discretization scheme. This

program is solved online at each control cycle. For the remainder, and without

limitation, we assume that the robot is fully actuated with n joints, the state vector

x = (q, q̇) ∈ R2n includes the joint positions and velocities and the control vector

u = τ ∈ Rn includes the joint torques.

83

4.1.2 Rigid contact model

In optimization-based control, it is convenient to assume that contacts between

the robot and the environment are rigid, i.e., pure kinematic constraints that can

be resolved at the dynamics level. The dynamics of a robot in contact is given by

the following constrained dynamical system corresponding to the KKT conditions

of Gauss’ principle of least constraint [172]

M(q) JT (q)

J(q) 0


 q̈

−F

 =

τ − b(q, q̇)

−α0(q, q̇)

 (4.2)

where M(q) ∈ Rn×n is the generalized inertia matrix, J(q) ∈ Rnc×n the contact

Jacobian, F ∈ Rnc the contact force, b(q, q̇) ∈ Rn the nonlinear effects of Coriolis,

centrifugal and gravity forces, and α0(q, q̇) ∈ Rnc the contact acceleration drift.

For clarity, the dynamics f in (4.1), is in fact the solution map of system (4.2), i.e.

f : (q, q̇, τ) 7→ (q̈, F). The dependencies in q, q̇ will be dropped in the remainder.

4.1.3 The challenge of force feedback

While the rigid contact model conveniently fits the MPC framework, it inherently

prevents force feedback. The contact force F corresponds to the Lagrange multiplier

of the contact constraint, namely Jq̈+α0 = 0 (second row of the system (4.2)) [29].

As such, it cannot be controlled in a feedback sense: once x = (q, q̇) and F are

measured, u = τ is already completely determined by (4.2). Hence, u cannot be

optimized as a function of F without creating an algebraic loop. This issue is a

typical pathology from control systems with non-zero input-output feedthrough and

can be broken by introducing delay [118]. This point was discussed and addressed

84

in our previous work [103], where actuation was modeled as a low-pass filter, and

the joint torques were treated as part of an augmented state. In contrast, we

propose in this Chapter to break this coupling thanks to the online estimation

without augmenting the state of the MPC.

4.2 Force-feedback MPC via online estimation

This section presents a new approach using estimation to leverage force sensor

feedback in MPC. It includes an estimator, a reformulation of the MPC problem to

include force feedback in the MPC model, and a feedback-linearizing compensation

term for unmodeled force directions.

4.2.1 Estimation

As explained previously, it is unclear how to achieve force feedback under the

rigid contact assumption without introducing delays or more complex contact

models. We show here that estimation is a simple way to circumvent this issue

by keeping the rigid contact assumption and correcting the model. Indeed, due to

numerous model inaccuracies, the force F predicted by (4.2) rarely matches the

force measurement. Hence, a natural idea is to keep track of this mismatch by

estimating online the offset between the model and the measurement with standard

Kalman filtering [171].

The idea of estimating an offset error to improve the closed-loop performance

of the controller is standard in estimation (e.g., [154]). We show that a disturbance

∆ in the dynamics can incorporate rich force sensor feedback information in the

85

MPC. We consider a model of the form:

Mq̈ + b = τ + JTF +M(∆), (4.3a)

Jq̈ = −α0. (4.3b)

Here,M models how ∆ offsets the dynamics. While the mismatch can be modeled

in many ways, we assume thatM is linear. Specifically, we consider two different

models:

• Torque offset (in joint space) : M(∆τ) = ∆τ

• Force offset (in task space) : M(∆F) = JT∆F

This offset is meant to correct the model mismatch due to inaccurate modeling

of, e.g., the dynamics, contact model, external disturbance, etc. The idea is to

estimate the offset online, given raw measurement. More precisely, given a prior on

the offset ∆̂, we use joint positions, velocities, accelerations, torque commands, and

force measurements to update the force offset. We assume perfect joint position

and velocity measurements, and Gaussian measurement noise:

∆ = ∆̂ + w, w ∼ N (0, P), (4.4a)

q̈m = q̈ + v, v ∼ N (0, Q), (4.4b)

Fm = F + η, η ∼ N (0, R), (4.4c)

where Fm is the force measurement and q̈m the acceleration measurement. P,Q and

R are positive-definite covariance matrices. As it is traditionally done in Kalman

filtering, each disturbance distribution is considered to be Gaussian, which allows

to solve the Maximum Likelihood Estimation (MLE) problem [171]. Here, the

86

MLE aims at finding the parameters ∆, q̈, F that maximize the probability density

function given the observed measurement and prior force offset:

max
∆,q̈,F

p(∆, q̈, F | ∆̂, q̈m, Fm) (4.5)

subject to constraint (4.3a)

Applying the negative logarithm and leveraging the normal distribution assumption,

the problem is equivalent to:

min
∆,q̈,F
∥∆− ∆̂∥2P−1 + ∥q̈ − q̈m∥2Q−1 + ∥F − Fm∥2R−1

subject to constraint (4.3a) (4.6)

where ∥w∥2P−1 = wTP−1w. IfM(∆) is linear, Problem (4.6) becomes an equality

QP and can be solved very efficiently with off-the-shelf solvers. This, in turn, allows

high-frequency online estimation, e.g., 5 kHz for a 7 DoF robot. As in a Kalman

filter, the obtained estimate ∆ is used as a prior at the next time step.

Note that other constraints can be considered in the QP, such as inequalities

on estimated quantities (e.g. force offset).

Remark 6. If additional inequality constraints are unnecessary, one may solve

the problem using a Kalman filter [171]. More specifically, one can use Recursive

Least Squares (RLS) [90] with the transition equation, ∆ = ∆̂ + w along with the

observation equation

 q̈m
Fm

 =

−M JT

J 0


−1 b− τ −M(∆)

−α0

+

v
η

 , (4.7)

87

in order to estimate ∆ online. Note that ifM is linear, this observation model is

linear, and one can use the RLS equations to derive an update rule on ∆.

4.2.2 Force feedback in the MPC via estimation

Once estimated, the force offset must be considered by the controller. This will

break the coupling between forces and torques discussed in Section 4.1.3 by adding

a delay between the measurement and the corrective term ∆F .

4.2.2.1 Naive inclusion as a corrective control

A naive approach is to add a feedforward term to the optimal torque given by

the MPC, τMPC, to compensate the estimated offset:

τ = τMPC −M(∆). (4.8)

Although this work focuses on MPC, this method is agnostic to the nature of the

controller.

4.2.2.2 Inclusion in the predictive model

Alternatively, the offset can be considered directly in the model used by the

MPC. More precisely, we can consider that the offset will be constant over the

horizon of the MPC and solve the OCP using as dynamics Eq. (4.3a) (instead of

Eq. (4.2)). The MPC model is then updated online at each offset estimate update.

Remark 7. Interestingly, whenM(∆F) = JT∆F , updating the predictive model

is in fact equivalent to modifying the force reference in the cost function. More

88

specifically, the modified dynamics can be written in the following way:

 q̈
F

 =

−M JT

J 0


−1 b− τ

−α0

−
 0

∆F

 . (4.9)

Therefore, the force offset only biases the predicted forces and does not affect the

acceleration. This means that this force offset has no impact on the predicted

trajectory. The offset will only impact terms of the cost function that include

the predicted force. Given a cost of the form ℓ(x, u, F (x, u,∆F)), we can simply

consider ℓ(x, u, F (x, u)−∆F)) , and discard ∆F from the prediction model. This

greatly simplifies the implementation and gives more interpretation to the method.

Interestingly, if the cost function does not depend on the force, the force offset will

not impact the solution of the OCP.

4.2.3 Direct compensation of unmodeled force directions

The above formulation assumes that force can only be exerted in the nc con-

strained dimensions. However, in reality, forces can exist in the other 6 − nc

directions and may interfere with the task if not taken into account (e.g. friction

during a polishing task if only the normal force is modeled).

Following [184], instead of using an explicit 6D force model to compute a feed-

forward compensation term, we propose to use the force measurements directly. This

is in fact a form of Feedback Linearization (FL) as emphasized in [49]. Concretely,

we add to the optimal torque given by the MPC the following compensation FL

89

term

τ = τMPC − JT
6DSF

m
6D, (4.10)

where J6D ∈ Rn×6 and Fm
6D ∈ R6 are the full 6D Jacobian and measured force, and

the selection matrix S : R6 → R6 nullifies the nc constrained dimensions. In the

experiment section, we will show that this simple FL term will lead to competitive

performances with more established yet more complex friction models such as the

Coulomb model.

From a control perspective, it could seem unsafe at first glance to use measured

forces in the control torque because the robot would always maintain itself in a

disturbed state, which would create divergence of the force (e.g., pushing harder).

But this would happen only if unmodeled forces are unbounded (i.e. motion is

actually constrained by the environment). If the unmodeled forces are bounded,

the disturbance would simply generate motion in their directions. For instance,

if the normal force on a plane is stably controlled, the lateral forces are bounded

by it through the friction cone. In that case, a disturbance increasing the lateral

forces would simply make the robot slip. So this FL term is a safe compensation

term to use in practical situations.

Remark 8. The FL compensation term in Eq. (4.10) could instead be added directly

inside the MPC model, assuming that it remains constant over the whole horizon.

90

4.3 Experimental study

In this section, we evaluate the performance of the proposed approach through

a comparative experimental study on a torque-controlled manipulator. First, we

show the major advantage in tracking performance of using explicit force feedback

over classical MPC. This benefit is twofold: force feedback enables to effectively

cancel friction, and it corrects the model mismatch thanks to online estimation.

Second, we demonstrate the benefit of encoding the model mismatch in the task

space (∆F) rather than in the joint space (∆τ). Finally, we show how the proposed

approach outperforms the most established force control strategy (integral control)

by demonstrating that its force tracking performance is identical, but that it

additionally aligns with the MPC objectives.

4.3.1 Experimental setup

All experiments were performed on the torque-controlled KUKA LBR iiwa

R82014. We used an ATI F/T Sensor Mini40 mounted at the tip of the arm on a

custom end-effector mount piece. A short MPC horizon (4 nodes of 6ms) allowed

to run the MPC and the estimator synchronously at 1 kHz. The estimation QP

problem (4.6) is solved using ProxQP [9], the OCP (4.1) is transcripted using

Crocoddyl [120], and rigid-body dynamics are computed using Pinocchio [33].

Our code is publicly available2. Moreover, the accompanying video illustrates the

robustness of the proposed approach to external disturbances.

2https://github.com/machines-in-motion/force_observer

https://github.com/machines-in-motion/force_observer

91

4.3.2 Tasks formulation

4.3.2.1 Polishing task

A constant normal force is exerted on a horizontal plane (ex, ey) while tracking

a circular end-effector trajectory. The MPC includes a 1D rigid contact force model

(nc = 1) so that the constraint (4.3b) prevents motions in the normal direction ez,

and ignores tangential forces in the (ex, ey) directions. The cost function is

ℓ(x, u, t) = w1∥x(t)− x̄(t)∥2Q1
+ w2∥u(t)− ū(t)∥2Q2

+w3∥pee(t)− p̄ee(t)∥2Q3
+ w4∥F (t)− F̄ (t)∥2Q4

+w5∥vee(t)∥2Q5
+ w6∥ log3

(
R̄ee(t)TRee(t)

)
∥2Q6

where (wi, Qi)i=1..6 are positive scalar weights and positive diagonal activation

matrices, x̄(t) = (q̄(t), 0) is a reference configuration, pee(t), F (t), Ree(t) are the

position of the end-effector, contact force and end-effector orientation respectively,

, p̄ee(t), F̄ (t), R̄ee(t) are their respective references, vee(t) is the end-effector velocity,

ū(t) = g(q(t))− JTF (t) is the gravity compensation torque under external forces,

log3 : SO(3) 7→ so(3) is the logarithm map on rotations. The circular trajectory

p̄ee(t) has a diameter of 14 cm and a speed of 3 rad s−1, unless otherwise stated.

The reference normal force is constant F̄ = 50N.

4.3.2.2 Force step tracking task

A 3D contact force (nc = 3) step signal is tracked. Hence the motion of the

end-effector is constrained in normal and tangential directions. The cost function

has the same form as the polishing cost function (4.11), with the only differences

92

that F (t), F̄ (t) are 3D, the reference end-effector position pee(t) is now constant,

and the force reference is defined as F̄ (t) =
(
F̄x(t), F̄y(t), F̄z(t))

)
where F̄x(t) is a

step signal from −10N to 10N, F̄y(t) = 0N and F̄z(t) = 100N are constant.

4.3.2.3 Energy minimization

A sinusoidal joint position trajectory is tracked while maintaining a fixed 3D

contact with the horizontal plane and minimizing ∥τ∥2. The cost function is similar

to the polishing (4.11), except that the reference configuration q̄(t) is no longer

constant, no end-effector cost is used (w3 = w5 = 0), and the control regularization

term is turned into an energy term (ū(t) = 0). The reference joint trajectory is a

sine on the A3 joint with an amplitude of 0.2 rad and a frequency of 2Hz. Here

the force objective acts as a regularization term to avoid slipping and large forces

(i.e. w4 ≪ w1, w2, w6) and the reference is F̄ (t) = (0, 0, 50).

4.3.3 Friction model vs direct measurement feedback (FL)

We evaluate the effect of force feedback as a direct compensation of the contact

friction (Section 4.2.3). We compare its performance on the polishing task against

the classical MPC (i.e., without compensation) and the well-known Coulomb’s

friction model

FT = −µ v

∥v∥
FN , (4.11)

where FT ∈ R2 is the tangential force, FN ≜ F ∈ R is the normal force, v ∈ R2 is

the tangential velocity of the contact point and µ is the dynamic friction coefficient.

This model is clearly discontinuous in v so in order to avoid chattering phenomena,

93

40

45

50

55

60

65

70

Fo
rc

e
(N

)

Reference
Default
Coulomb
FL

0 5 10 15 20
Time (s)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Po
sit

io
n

er
ro

r (
m

)

Figure 4.1: Normal force trajectories of the medium-velocity polishing task. The
blue curve is the classical MPC without friction compensation, the green curve is
the classical MPC with the Coulomb model compensation, and the red curve is the
classical MPC with FL compensation.

we consider the following smooth relaxation

FT = −µtanh(ϵ∥v∥)√
2

v

∥v∥
FN , (4.12)

where we used µ = 0.35 and ϵ = 10. Our results are reported in Table 4.1

for several polishing speeds. We can see that the Coulomb model is slightly

better in fast motions but less performing in slow motions. Figure 4.1 shows the

corresponding force trajectories for the medium-speed polishing task. Note that

the FL compensation term only uses the 3D Jacobian as the contact torques are

negligible in that task. These experiments confirm that considering the friction

forces substantially increases performance w.r.t. classical MPC. Moreover, it shows

that explicit force feedback from sensors can effectively be used as an FL term to

94
Default FL Coulomb

Slow (1 rad/s) 7.67± 0.55 3.83± 0.17 4.72± 0.21
Medium (3 rad/s) 9.66± 1.38 3.92± 0.56 3.99± 0.33
Fast (6 rad/s) 16.42± 0.79 5.22± 0.32 4.82± 0.25

Table 4.1: Mean-absolute error (MAE) of the normal force (in N) for the polishing
task over 10 circles: classical MPC (Default), FL compensation (4.10) and Coulomb
model (4.12).

∆τ ∆F
Corrective control 2.01± 0.08 1.55± 0.03
Predictive model 1.95± 0.07 1.55± 0.04

Table 4.2: MAE of the normal force (in N) for the polishing task: force offset ∆F
vs. torque offset ∆τ , used in the control loop either in the ”predictive model” way
of 4.2.2.2 or in the ”corrective control” way of 4.2.2.1.

directly compensate for friction effects and that it leads to a similar performance

to well-established friction models.

As pointed out in Remark 8, it would be interesting to use the Coulomb model

inside the MPC so that lateral forces are predicted using velocity and rigid normal

force predictions, but this raises challenging issues (non-smoothness, insufficient

software, breaks symmetry of KKT (4.2), etc.).

4.3.4 Comparison between force offset and torque offset

In this experiment, we compare the two mismatch models introduced in Section

4.2.1, namely the torque offset ∆τ and the force offset ∆F . Although capturing

all disturbances in ∆τ seems intuitive, experimental comparisons on the polishing

task reveal a higher tracking accuracy for ∆F . For each model, we implemented

the two ways of incorporating the correction into the MPC, namely

• The ”corrective control” way of 4.2.2.1: the correction is added to the optimal

torque as a feedforward input

95

40

45

50

55

60

65

70

Fo
rc

e
(N

)

Reference
Default
FL
FL + ΔF (PM)

0 5 10 15 20
Time (s)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Po
sit

io
n

er
ro

r (
m

)

Figure 4.2: Normal force (top) and end-effector position error (bottom) for the
polishing task: in blue the classical MPC (4.1), in green the classical MPC with the
FL compensation term (4.2.3), in red the proposed approach with FL compensation
and the force offset in the predictive model (4.2.2.2).

• The ”predictive model” way of 4.2.2.2: the correction is added directly to the

model

Figure 4.2 illustrates how force feedback improves both the force tracking and the

end-effector position tracking. Our results are summarized in Table 4.2. There is a

notable performance difference between ∆F and ∆τ with a clear advantage for the

force offset. Intuitively, the torque offset estimates perturbations unrelated to the

contact (e.g. joint stiction) while the force offset only corrects what is necessary to

improve the force tracking. There is, however, no clear difference in performance

between using the estimate as a corrective control or in the predictive model. There

seems to be a slight advantage for the predictive model, but the performance gap

is too shallow to draw any conclusions.

96

4.3.5 Integral force control

Our approach is now compared to the most established direct force control

approach - integral control. We were not able to find a difference in performance

between using the integral term in the predictive model or as a corrective control.

This question being out of the scope of this Chapter, we propose to consider only

the latter:

τ = τMPC − J(q)T
(
−KI

∫ t

0

(
F (t′)− F̄ (t′)

)
dt′
)

(4.13)

Note that we deliberately chose not to include a proportional and a derivative control

term as Volpe et al. [178] demonstrated both theoretically and experimentally that

pure integral gain control was the best choice for accurate force tracking.

4.3.5.1 Polishing

We observed the same force tracking performance on the polishing task for the

integral controller (1.69± 0.05N) than for the proposed approach (cf. Table 4.2,

∆F as corrective control).

4.3.5.2 Step experiment

We show in this experiment that the proposed approach and integral control

have equivalent force tracking performances on a force step tracking task. The

force trajectories are in Figure 4.3. We also report the average force tracking error

of all the controllers in Table 4.3.

97

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

−15

−10

−5

0

5

10

15

20

F
(N

)
Reference
Default
Integral
ΔF (PM)

Figure 4.3: Lateral force trajectories in the ex direction for the force step tracking
task: the blue curve is the classical MPC (Default), the green curve is the classical
MPC with with integral control (Integral) and the red curve is the force offset
estimation ∆F included in the predictive model (∆F (PM)).

Avg. error
Default 1.99

∆F (predictive model) 0.71
∆F (corrective control) 0.60
∆τ (predictive model) 0.80
∆τ (corrective control) 0.87

Integral control 0.68

Table 4.3: MAE of the normal force error for a step tracking task for different
controllers: classical MPC (Default), force offset estimation (∆F), torque offset
estimation (∆τ) and integral control. ∆F and ∆τ are used as corrective control
(4.2.2.1) or in the predictive model (4.2.2.2).

4.3.5.3 Energy minimization

In this experiment, we illustrate the ability of force feedback MPC to achieve

contact tasks with conflicting objectives. Table 4.4 shows how the proposed force

estimation approach aligns with the MPC objectives by trading off force tracking

against energy minimization: its overall cost is lower than the integral controller,

which conflicts with the MPC and generates a high cost. These results also show

interestingly that somehow, the torque offset estimation (∆τ) uses less energy than

the force offset estimation (∆F), although it yields a slightly higher cost overall.

This suggests that encoding the mismatch as a joint torque offset may have its own

98

Avg. ∥τ∥2 Total cost
Default 136± 21 0.44± 0.02

∆F (predictive model) 139± 13 0.43± 0.01
∆F (corrective control) 145± 18 0.43± 0.02
∆τ (predictive model) 131± 21 0.48± 0.01
∆τ (corrective control) 132± 22 0.51± 0.02

Integral control 1052± 29 0.82± 0.027

Table 4.4: Average squared torque and total cost for each controller for the energy
task: classical MPC (Default), force offset estimation (∆F), torque offset estimation
(∆τ) and integral control. ∆F and ∆τ are used as corrective control (4.2.2.1) or in
the predictive model (4.2.2.2).

benefits, other than accurate force tracking. The accompanying video illustrates

the relative importance of w2∥τ∥2Q2
w.r.t. the total cost.

4.4 Conclusion

In this Chapter, we proposed a simple approach to achieve force feedback in

MPC that relies on the online estimation of the mismatch between the predicted

forces and the force measurements. Our experiments showed that force feedback

effectively cancels friction and brings the force tracking performance to the level of

the most established direct force control strategies. We also studied two variants

of our approach: the estimation of a torque offset in the joint space, and the

estimation of a force offset in the task space. Our experiments show that the force

offset yields a more accurate force tracking while the torque offset is more generic

and can enhance other criteria (e.g., energy minimization).

Through this study of force-feedback MPC, we have seen how online estimation

can be used to adapt the model of the controller to unforeseen situations. While this

can be very effective, this ignores the estimation uncertainty and therefore cannot

99

reason about the notion of risk. In safety-critical applications, naively considering

the estimated state to be the real state can be suboptimal or lead to catastrophic

results. In the next Part, we investigate how to solve efficiently formulations that

consider the estimation and control problem jointly in order to reason about the

risk due to the perception uncertainty.

100

Part II

Reasoning about the Perception

Uncertainty

101

102

Chapter 5

Stagewise Newton Method for

Dynamic Game Control With

Imperfect State Observation

In this Chapter1, we study dynamic game optimal control with imperfect state

observations. This formulation solves jointly the estimation and control problem in

order to reason online about the perception uncertainty. While this formulation

has been widely studied theoretically, the lack of an efficient solver has hindered

its deployment on hardware. Hence, we introduce a stagewise implementation of

the Newton method to efficiently solve dynamic game control with imperfect state

observation in the nonlinear case.

1This Chapter is adapted from the following publication: A. Jordana et al. ”Stagewise newton
method for dynamic game control with imperfect state observation.” IEEE Control Systems
Letters, 2022.

103

5.1 Dynamic game control with imperfect state

observation

Similar to [39, 40], this work studies a special class of nonlinear dynamic games

with imperfect state observation [94]. Given a history of measurements y1:t, a

history of control inputs, u0:t−1 and a prior on the initial state x̂0, we aim to find a

control sequence ut:T−1 that minimizes a given cost ℓ while an opposing player aims

to find the disturbances (w0:T , γ1:t) that maximize this cost ℓ minus a weighted

norm of the disturbances. Such a problem is formally written as:

min
ut:T−1

max
w0:T

max
γ1:t

T−1∑
j=0

ℓj(xj, uj) + ℓT (xT) (5.1)

− 1

2µ

(
ωT
0 P

−1ω0 +
t∑

j=1

γT
j R

−1
j γj +

T∑
j=1

wT
j Q

−1
j wj

)

subject to x0 = x̂0 + w0, (5.2a)

xj+1 = fj(xj, uj) + wj+1, 0 ≤ j < T, (5.2b)

yj = hj(xj) + γj, 1 ≤ j ≤ t. (5.2c)

where µ > 0. xj is the state, ωj the process disturbance, γj the measurement

disturbance, T the time horizon, t the current time. The transition model fj, the

measurement model hj and the cost ℓj are assumed to be C2. The measurement

uncertainty Rj, the process uncertainty Qj and the initial state uncertainty P are

positive definite matrices.

Interestingly, this problem encompasses various formulations of control and

104

estimation. If t = 0 and if w0 is fixed to zero, we recover dynamic game control

with perfect state information. Additionally, if t = 0, in the limit where µ tends to

zero, we find the generic optimal control formulation [30]. And lastly, if t = T and

if we consider all the cost ℓj to be null, then, (5.1) is equivalent to maximizing the

MAP.

In the linear dynamics and quadratic cost case, Jacobson [91] showed that dy-

namic game control is equivalent to risk-sensitive control and derived a closed-form

solution. Later, Whittle [186] extended the results to the linear quadratic case

with imperfect state observations. In [78], a first iterative version of Whittle’s

solution was introduced to tackle the nonlinear risk-sensitive problem with im-

perfect observations. However, the stochastic nature of the problem hindered the

development of theoretical guarantees. Although dynamic game and risk-sensitive

control are equivalent in the linear quadratic case [91], this is no longer the case in

the nonlinear setting [30]. Nonetheless, dynamic game control is tightly connected

to robust and risk-sensitive control. In [30, 94], James and Campi showed that

dynamic game control can be interpreted as the limit case of risk-sensitive control

when noise tends to zero. Recently, Başar [12] presented a detailed overview of the

connections between both problems in continuous time. Additionally, Başar and

Bernhard [15, 20] established the connections between dynamic game control and

H∞-Optimal Control both in the perfect and imperfect state information cases.

For nonlinear systems, estimating a state trajectory corresponding to some given

measurements is usually intractable analytically. A common approach is to model

the noise as Gaussian and to maximize the Maximum A Posteriori (MAP) [42].

If the dynamics are affine, then the problem can be solved analytically with the

so-called Rauch–Tung–Striebel (RTS) smoother [151]. The RTS smoother is made

105

of a forward recursion which resembles the Kalman Filter (KF) and a backward

recursion. In the nonlinear case, iterative schemes are usually used. A popular

choice is the iterative Kalman smoother which is equivalent to a Gauss-Newton

method on the MAP [17]. The estimation part of our proposed solution resembles

a risk-sensitive version of this smoother.

In optimal control or dynamic game control with perfect state information,

various numerical optimization algorithms have been developed to iteratively find

solutions in the nonlinear case. In optimal control, the most analogous to our

work are Differential Dynamic Programming (DDP) [137] and the stagewise im-

plementation of Newton’s method [55]. The stagewise Newton method is an exact

implementation of Newton’s method that exploits the specific structure of the

Hessian matrix in order to scale linearly with the time horizon. DDP is an iterative

algorithm that takes an update step on the control input by applying dynamic

programming on a quadratic approximation of the value function. In [137], Murray

showed that DDP is very similar to a Newton step and inherits its convergence

properties. For dynamic game control with perfect state information, the seminal

work from [133, 135] introduced minimax DDP showing that DDP could be ex-

tended to zero-sum two-player games. Recently, [45] further extended the concepts

of stagewise Newton method and DDP to nonzero-sum games with an arbitrary

number of players in the full information case.

106

5.2 Stagewise Newton method

5.2.1 First order conditions for a Nash equilibrium

The main challenge in the problem formulation (5.1) is the equality constraint

maintaining the dynamic feasibility. A popular approach [133] is to derive a DDP-

like algorithm by sequentially taking quadratic approximations of the value function

recursion. However, a stagewise Newton step can readily be derived. One of the

key features of the dynamic game (5.1) is that by changing the decision variable of

the opposing player, one can transform the problem into an unconstrained one [94].

Indeed, we can use the equality constraints of Eq. (5.2) to replace disturbance

maximization into a maximization over the state sequence. Then the problem loses

its equality constraints and can be formulated as the search of the saddle point of

J(x0:T , ut:T−1) =
T−1∑
j=0

ℓj(xj, uj) + ℓT (xT) (5.3)

− 1

2µ
(x0 − x̂0)

TP−1(x0 − x̂0)

− 1

2µ

t∑
j=1

(yj − hj(xj))
TR−1

j (yj − hj(xj))

− 1

2µ

T−1∑
j=0

(xj+1 − fj(xj, uj))
TQ−1

j+1(xj+1 − fj(xj, uj)).

However, without convexity and concavity assumptions, we cannot aim at finding

global solutions of the minimax problem. Hence, we restrict our attention to local

Nash equilibrium, namely a point (x⋆
0:T , u

⋆
t:T−1) such that there exists δ > 0 such

that for any (x0:T , ut:T−1) satisfying ||x0:T − x⋆
0:T || < δ and ||ut:T−1 − u⋆

t:T−1|| < δ,

107

we have

J(x0:T , u
⋆
t:T−1) ≤ J(x⋆

0:T , u
⋆
t:T−1) ≤ J(x⋆

0:T , ut:T−1). (5.4)

A standard approach to this problem is to search for a stationary point [13]:

 ∂J
∂x0:T

(x⋆
0:T , u

⋆
t:T−1)

∂J
∂ut:T−1

(x⋆
0:T , u

⋆
t:T−1)

 = 0 (5.5)

Interestingly, the change of decision variable in Eq. 5.3 turned the problem into an

unconstrained one but made no assumption on the structure of the cost. The only

required assumption is that each disturbance is in a one-to-one map with the state

at each time step.

5.2.2 About the Linear Quadratic case

In the linear quadratic case, Whittle has shown that under some conditions, the

saddle point of (5.4) is global and can be computed analytically. More precisely, the

order of the minimization and maximization in (5.1) can be interchanged, namely

the lower value and upper value of the game are equal. Despite this result, one of

the difficulties of the problem (5.1) is that it links estimation and control. One of

the major contributions of Whittle is the introduction of the notion of past stress

and future stress, showing that the KF and LQR principles can still be applied. In

other words, the problem can be solved by performing a backward recursion on the

controls and future states and a forward recursion on the past states. The future

stress recursion can be interpreted as a value function recursion similar to LQR,

while the past stress can be interpreted as a rollout of KF. Here, we use these two

108

principles to efficiently solve iteratively the nonlinear case.

5.2.3 A stagewise Newton’s method

In this section, a stagewise formulation of the Newton method to find a stationary

point of J is introduced. While a naive implementation of the Newton method would

yield a complexity of O(T 3), it is shown that the special structure of the Hessian

induced by time can be exploited in order to obtain a linear complexity in time O(T).

In the perfect state observation case, [55] and [45] derived a stagewise Newton

method with a backward recursion on the controls. However, with imperfect state

observation, it is no longer clear how to do this with only one recursion. Instead,

we show that the principles introduced by Whittle can be applied.

To ensure that the proposed method is well defined and to guarantee convergence,

we assume that the cost satisfies smoothness and non-degeneracy conditions required

for the convergence of Newton’s method [143]. As the cost (5.3) is unconstrained,

the gradients and Hessian of the cost can readily be computed. At iteration i, given

a guess xi
0, x

i
1 . . . , x

i
T , u

i
t . . . , u

i
T−1, also referred to as the nominal trajectory, the

Newton step, denoted by p, satisfies


∂2J

∂x0:T∂x0:T

∂2J

∂x0:T∂ut:T−1

∂2J

∂ut:T−1∂x0:T

∂2J

∂ut:T−1∂ut:T−1

 p =


∂J

∂x0:T

∂J

∂ut:T−1

 (5.6)

Here, p =

(
pTx0:T

pTut:T−1

)T

where px0:T
∈ R(T+1)nx is a stack of vectors pxk

∈ Rnx

with nx being the dimension of the state space. Similarly, put:T−1
∈ R(T−t)nu is a

stack of vectors puk
∈ Rnu with nu being the dimension of the control space. To

simplify the notations, we define an augmented Hessian of the cost that contains

109

the second-order derivatives of the dynamics for all k < T .

ℓ̄xxk = ℓxxk + µ−1wi
k+1

T
Q−1

k+1f
xx
k + µ−111≤k≤tγ

i
k

T
R−1

k hxx
k ,

ℓ̄xuk = ℓ̄ux
T

k = ℓxuk + µ−1wi
k+1

T
Q−1

k+1f
xu
k ,

ℓ̄uuk = ℓuuk + µ−1wi
k+1

T
Q−1

k+1f
uu
k , (5.7)

where the derivatives are evaluated at the current guess and where:

wi
k+1 := xi

k+1 − fk(x
i
k, u

i
k) (5.8)

γi
k := yk − hk(x

i
k) (5.9)

Here, the second order derivatives of the dynamics are tensors. The exact

definition of the tensor indexing and the tensor product is provided in Appendix B.

The next three propositions are analogous to the principles introduced by

Whittle: the past stress recursion, the future stress recursion, and the coupling of

the past and future stress recursions. The first proposition, analogous to the future

stress recursion, expresses every future state and control update step as a function

of pxt .

Proposition 3 (Future stress). In Equation (5.6), the last (T − t)(nx + nu) rows

are equivalent to:

∀k ≥ t, puk
= Gkpxk

+ gk (5.10)

pxk+1
= (I − µQk+1Vk+1)

−1 (fx
k pxk

+ fu
k puk

+ µQk+1vk+1 − wi
k+1)

110

where Vk and vk are solutions of the backward recursion:

Γk+1 = I − µVk+1Qk+1 (5.11)

Quu = ℓ̄uuk + fu
k
TΓ−1

k+1Vk+1f
u
k

Qux = ℓ̄uxk + fu
k
TΓ−1

k+1Vk+1f
x
k

Qu = ℓuk + fu
k
TΓ−1

k+1

(
vk+1 − Vk+1w

i
k+1

)
Gk = −Q−1

uuQux

gk = −Q−1
uuQu

Vk = ℓ̄xxk + fx
k
TΓ−1

k+1Vk+1f
x
k +QT

uxGk

vk = ℓxk + fx
k
TΓ−1

k+1

(
vk+1 − Vk+1w

i
k+1

)
+QT

uxgk

with the terminal condition

VT = ℓxxT , vT = ℓxT . (5.12)

In those equations, µ intervenes only in Γk and the augmented terms of the

cost. Interestingly, Γ−1
k shifts, at each time step, the value function terms Vk and

vk. Then, the second proposition, analogous to the past stress recursion, expresses

every past state update step as a function of pxt .

Proposition 4 (Past stress). In Equation (5.6), if t ≥ 1, the first (t− 1)nx rows

are equivalent to: ∀k = 0, . . . , t− 1,

pxk
= E−1

k+1

(
fx
k
TQ−1

k+1(w
i
k+1 + pxk+1

) + P−1
k µ̂k + µlxk

)
(5.13)

111

where Pk and µ̂k are solutions of the forward recursion:

Ek+1 = P−1
k + fx

k
TQ−1

k+1f
x
k − µl̄xxk

P̄k+1 = Qk+1 + fx
k (P

−1
k − µℓ̄xxk)−1fx

k
T

Kk+1 = P̄k+1h
xT

k+1(Rk+1 + hx
k+1P̄k+1h

xT

k+1)
−1

Pk+1 = (I −Kk+1h
x
k+1)P̄k+1

µ̂k+1 = (I −Kk+1h
x
k+1)(f

x
k µ̂k − wi

k+1) +Kk+1γ
i
k+1

+ µPk+1Q
−1
k+1f

x
kE

−1
k+1(ℓ̄

xx
k µ̂k + ℓxk) (5.14)

with the initialization

P0 = P, µ̂0 = x̂0 − xi
0. (5.15)

Interestingly, if all the cost terms ℓj are zero and if t = T , the method is

equivalent to a Newton method on the MAP. Furthermore, if the second-order

derivatives of the measurement function are omitted, then the algorithm is equivalent

to the iterative Kalman Smoother. Finally, the third proposition shows how both

past stress and future stress recursions can be coupled to find the update step pxt .

Proposition 5 (Coupling). In Equation (5.6), the remaining rows (from tnx + 1

to (t+ 1)nx) are equivalent to

pxt =
(
P−1
t − µVt

)−1 (
P−1
t µ̂t + µvt

)
. (5.16)

In the limit case when µ tends to zero, the estimation and control are decoupled

and we recover the usual certainty equivalence principle: pxt = µ̂t. The algorithm

112

is then equivalent to an iterative estimator and an iterative controller running

independently. More precisely, at each iteration, the controller uses the current

estimate of the smoother.

Proof. The proof follows from the analytical derivations of the gradient and the

Hessian of (5.3), a forward induction from 0 to t and a backward induction from

T to t. The complete proof is provided in the Appendix B.

Algorithm 4: Stagewise Newton step

Input: xi
0, x

i
1 . . . , x

i
T , u

i
t . . . , u

i
T−1

// Estimation forward pass

1 P0 ← P , µ̂0 ← x̂0 − xi
0

2 for k = 0, ...t− 1 do
3 Pk+1, µ̂k+1 ← Eq. (5.14)

// Control backward pass

4 VT ← ℓxxT , vT ← ℓxT
5 for k = T − 1, ...t do
6 Vk, vk ← Eq. (5.11)

// Estimation and control coupling

7 pxt
←
(
P−1
t − µVt

)−1 (
P−1
t µ̂t + µvt

)
// Estimation backward pass

8 for k = t− 1, ...0 do
9 pxk

← Eq. (5.13)

// Control forward pass

10 for k = t, . . . T − 1 do
11 puk

, pxk+1
← Eq. (5.10)

Output: px0
, px1

. . . , pxT
, put

. . . , puT−1

In the end, the update step, p, can be computed with a forward recursion on

the past indexes, a backward recursion on the future indexes, a coupling equation,

a backward recursion on the past indexes, and a forward recursion on the future

indexes. Algorithm 4 summarizes those steps. Clearly, the complexity is linear in

time. Instead of inverting a matrix of size ((T + 1)nx + (T − t)nu), Algorithm 4

only operates with matrices of size nx or nu and the number of operations is

proportional to T .

113

5.2.4 Line-search and convergence

In the linear quadratic case, Algorithm 4 is equivalent to Whittle’s derivations

and only one iteration is required to find a solution. However, in the general

nonlinear case, several iterations of Newton’s step are required. A common approach

to guarantee the convergence of the overall iterative procedure is to introduce a line

search and a merit function [143]. Given a guess at iteration i and a direction p,

the next guess is defined by

 xi+1
0:T

ui+1
t:T−1

 =

 xi
0:T

ui
t:T−1

+ αi

 px0:T

put:T−1

 , (5.17)

where the step length αi is chosen in order to decrease the merit function. As

advocated by Nocedal et al. [143], a Newton step provides a descent direction for

the merit function

fM(x0:T , ut:T−1) =
1

2

T∑
j=0

∥∥∥∥ ∂J∂xj

∥∥∥∥2 + 1

2

T−1∑
j=t

∥∥∥∥ ∂J∂uj

∥∥∥∥2 . (5.18)

This merit function can be derived analytically. The exact derivations of each

gradient are provided in the Appendix B. By construction, the expected decrease

of the direction p derived by Algorithm 4 is pT∇fM = −||∇J ||22 and the following

convergence guarantees hold.

Proposition 6. Assuming that the norm of the inverse of the Hessian of J is

bounded and that the step length αi satisfies the Wolfe conditions for the merit

function (5.18), the sequence (xi
0:T , u

i
t:T−1)i defined by the update rule (5.17) with

steps from Algorithm 4 is globally convergent to a stationary point of (5.3). Fur-

114

thermore, when the iterate is sufficiently close to the solution, the sequence has

quadratic convergence.

Proof. This proposition is a direct consequence of the fact that Algorithm 4 yields

a Newton step. A detailed proof of the convergence guarantees of the Newton

method is provided in [143].

One may ask under which conditions the Hessian of J is non-degenerate. Intu-

itively, large values of µ can make the problem ill-defined. Indeed, if the opposing

player can choose large disturbances, then the controller might not be able to

compensate. In the linear quadratic case, Whittle [186] studied this maximum

value for µ that makes the problem ill-defined. Although we do not study this limit

value in the nonlinear case, we note that analogously to the linear quadratic case,

the algorithm is well defined if Γk and P−1
k − µℓ̄xxk are positive-definite, which is

the case when µ is small enough.

5.2.5 About the cooperative case

So far, only the case, µ > 0 has been considered, but the case µ < 0 is also

well defined. Indeed, the search for a stationary point of J can be done for an

arbitrary sign of µ. However, such a stationary point would now be a way to find a

local minimum of J with respect to the variables (x0:T , ut:T−1). Interestingly, this

scenario can be interpreted as a cooperative scenario between the controller and

the opposing player. In fact, the disturbances can be seen as a second controller

minimizing the cost, ℓ, and maximizing the likelihood of the disturbances. Clearly,

this change of sign does not affect the derivation of the stagewise Newton method.

However, it can be noted that in that case, one can directly use the cost J as a

115

merit function.

5.3 Experiments

A Python implementation of the proposed method is available online 2. It

is based on the Crocoddyl software [121], a state-of-the-art (risk-neutral) DDP

solver that provides analytical derivatives of robot dynamics. In this section, two

numerical examples illustrate the proposed method.

5.3.1 Planar quadrotor

We study a quadrotor moving in a plane aiming to reach the position (px py) =

(2 0) starting at the origin without initial velocity. The state is

x = (px py θ ṗx ṗy θ̇)T (5.19)

where θ is the orientation of the quadrotor. The system dynamics is

mp̈x = −(u1 + u2) sin(θ),

mp̈y = (u1 + u2) cos(θ)−mg,

Jθ̈ = r(u1 − u2), (5.20)

where the control input u = (u1 u2)
T ∈ R2 represents the force at each rotor

and g is gravitational acceleration. An exponential cost models the presence of an

2https://github.com/machines-in-motion/dynamic_game_optimizer

https://github.com/machines-in-motion/dynamic_game_optimizer

116

obstacle

ℓk(xk, uk) = 0.3 exp
(
−10(pxk − 1)2 − 0.5(pyk + 0.1)2

)
+ 0.005∥uk − ū∥22 + 0.05(xk − x⋆)

TL(xk − x⋆)

ℓT (xT) = (xT − x⋆)
TL(xT − x⋆), (5.21)

where ū = mg
2
(1 1)T , x⋆ = (2 0 0 0 0 0)T , and L = diag(100 100 100 1 1 1).

Only the position, px, py, and orientation θ are part of the measurements. The

integration and discretization of the model is done with Runge Kutta 4 with a

time step of 0.05 and the total horizon, T , is 60. Furthermore, P0 = Q = 10−5I6,

R = 10−4 diag(1 1 0.01) and x̂0 is the origin. A backtracking line-search is used –

a step is accepted if f i+1
M ≤ f i

M + αicp
T
i f

i
M where f i

M = fM(xi
0:T , u

i
t:T−1) with c = 1

4
.

The iterative process is stopped when the decrease in the merit function is lower

than 10−12.

Figure 5.1 illustrates the solution obtained by the solver for different values of

µ. The neutral controller, the limit when µ tends to zero, aiming at minimizing the

cost without accounting for disturbances, is solved using DDP. Interestingly, when

µ is positive (the non-cooperative case), the opposing player chooses disturbances

that will push the quadrotor towards the obstacle, and when µ is negative (the

cooperative case), the opposing player chooses disturbances that will push the

quadrotor away from the obstacle. For this experiment, we found that the value of µ

for which Γk and P−1
k − µℓ̄xxk are no longer positive-definite matrices was around 20.

Next, we illustrate the risk-sensitive behavior of the resulting controller in

closed loop in a simulation with disturbances following Gaussian distributions:

117

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
px [m]

0.0

0.2

0.4

0.6

p y
 [m

]

Neutral
μ= − 6
μ= 6
μ= 12

Figure 5.1: Initial plan for different values of µ. The larger µ the more the controller
plans to be pushed against the obstacle.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
px [m]

0.0

0.2

0.4

0.6

p y
 [m

]

Neutral
μ= 6

Figure 5.2: Average trajectory. Compared the neutral controller, the dynamic game
controller (µ = 6) exhibits a risk sensitive behavior as it remains further from the
high cost area representing the obstacle.

x0 ∼ N (x̂0, P0), wk ∼ N (0, Q) and γk ∼ N (0, R). We set µ = 6 and at each

time step of the simulation, Algorithm 4 is run and ut is applied to the system.

Additionally, we compare to the neutral controller – an iterative Kalman smoother

is used for the filtering and the controller uses DDP with the last state estimate

from the smoother as an initial condition. Figure 5.2 depicts the average and

standard deviation over one thousand simulations. We can see that, in this MPC

118

0

5

u 1
 [N

]
Neutral
μ= 6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [s]

2.5

5.0

7.5

u 2
 [N

]

Figure 5.3: Average control trajectories. Compared the neutral controller, the
dynamic game controller (µ = 6) has a larger standard deviation.

scheme, the dynamic game controller maintains a larger distance from the obstacle,

resulting in safer behavior. Figure 5.3 shows the distribution of control trajectories.

Interestingly, the dynamic game controller has a larger standard deviation.

5.3.2 An industrial robot

In this example, we consider the 7-DoF torque-controlled KUKA LWR iiwa

R820 14. The dynamics of the robot are provided by Pinocchio [32]. The 14-

dimensional state is composed of the joint positions and velocities. We consider the

following prior on the initial condition x̂0 =

(
0.1 0.7 0. 0.7 −0.5 1.5 0.

)T

.

The control input is a 7-dimensional vector of the torque applied on each joint. The

goal is to move the end effector to a desired position, ptarget =

(
−0.4 0.3 0.7

)

119

with the following cost:

ℓk(xk, uk) = 10−3∥xk − x̂0∥22 + 10−6∥uk − ū(xk)∥22

+ 10−1∥ptarget − p̄(xk)∥22

ℓT (xT) = ∥ptarget − p̄(xk)∥22 + 10−3∥xk − x̂0∥22, (5.22)

where ū(xk) is the gravity compensation and p̄(xk) the position of the end-effector.

For the measurement model, we assume that only the joints’ positions are mea-

sured. The initial control inputs u0, . . . ut−1 are generated with DDP. Given those

t initial control inputs, t measurements are generated according to an undis-

turbed trajectory. More precisely, for 1 ≤ k ≤ t, the observations are defined

by yk = hk(f
(k)(x̂0, u1:k−1)) where f (k)(x̂0, u1:k−1) denotes the state value at the

kth step integrated from the initial guess x̂0. The horizon, T , is 100 and t is 5

while the sensitivity parameter is set to µ = 1.2. Here P0 = Q = 0.01 × I14 and

R = 0.5× I7. For this experiment, the second-order derivatives of the dynamics

were approximated to be null as the former are not provided by most standard

rigid body dynamics libraries such as Pinocchio [32]. Note that this is a common

practice for state-of-the-art optimal control algorithms in robotics [121]. Our solver

converges nevertheless, suggesting that this approximation might be used to scale

to a large number of degrees of freedom for real-time computations (e.g. MPC). In

Figure 5.4, we plot the solution of the dynamics game solver compared to DDP in

the end-effector space; the shaded grey area represents the estimation part of the

solution. We can see that the dynamic game controller plans that the disturbances

will slow down the reaching task.

120

−0.4
0.0
0.4

PE
E

x
 [m

] Neutral
μ =1.2

0.0

0.2
PE

E
y

 [m
]

0.0 0.2 0.4 0.6 0.8 1.0
time [s]

0.75

1.00

PE
E

z
 [m

]

Figure 5.4: End-effector position vs time. The dashed lines represent the target.

5.4 Conclusion

In this Chapter, we introduced an iterative solver to find local Nash equilibrium

of dynamic game with imperfect state measurements. The proposed algorithm is

proven to be equivalent to Newton’s method and benefits from its convergence

properties while scaling linearly with the time horizon.

Solving simultaneously over a horizon of past measurements and future control

allows to reason about the perception uncertainty. However, in practice, estimation

does not always require a large history of measurement. In fact, the Kalman filter,

the most widely used filter, only requires one past measurement to provide an

estimate. In the next Chapter, we will show that under the same assumptions as

the established Kalman filter, we can derive a filter reasoning about risk.

121

Chapter 6

Risk-Sensitive Extended Kalman

Filter

In this Chapter1, we leverage our previous theoretical results on dynamic

game control with imperfect state observation (Chapter 5) to introduce the Risk-

Sensitive Extended Kalman Filter (RS-EKF), a novel filter that enables online

risk-sensitive output feedback MPC. The RS-EKF computes state estimates robust

to measurement uncertainty while taking into account the value function provided

by the controller, i.e., the estimator tailors risk reduction to the control objectives.

This, in turn, enables automatic modification of robot decisions to be cautious in

times of high environmental perturbation. Furthermore, RS-EKF has a similar

computational cost to an EKF, allowing real-time deployment. To demonstrate

the ability of the filter, we use it together with a DDP-based online non-linear

controller to perform risk-sensitive output-feedback MPC on various simulated

1This Chapter is adapted from the following publication: A. Jordana et al. ”Risk-Sensitive
Extended Kalman Filter.” IEEE International Conference on Robotics and Automation (ICRA)
2024.

122

robots, such as a quadrotor subjected to arbitrary changes in its mass, and a KuKa

robot facing unforeseen environmental disturbances. Finally, we test the filter on

a real quadruped robot Solo12 [75] to perform an external force estimation and

balancing task. These experiments demonstrate that the robots are more robust to

perturbations with the RS-EKF algorithm than a classical EKF. To the best of our

knowledge, this is the first time that a non-linear risk-sensitive output-feedback

MPC controller has been deployed on a robot.

6.1 Background: Extended Kalman Filter

We now discuss the structure of the EKF necessary to derive our filter. The

EKF is usually derived by computing the probability a posteriori of the state given

measurements, using the linearized dynamics and a Gaussian noise assumption

[171]. However, the EKF can also be derived from an optimization point of view

[18]. More precisely, the EKF can be seen as a Gauss-Newton step around a well-

chosen point on the log-likelihood of the maximum a posteriori probability (MAP),

i.e. log(p(xt, xt−1|yt)) [18]. Assuming disturbances follow Gaussian distributions,

γt ∼ N (0, Rt), ωt ∼ N (0, Qt), the MAP can be written as:

max
xt,xt−1

−(yt − ht(xt))
TR−1

t (yt − ht(xt))

−(xt − ft−1(xt−1, ut−1))
TQ−1

t (xt − ft−1(xt−1, ut−1))

−(xt−1 − x̂t−1)
TP−1

t−1(xt−1 − x̂t−1) (6.1)

where x̂t−1 is the prior knowledge on the past state and Pt−1 its associated covariance

matrix. As shown in [18], a Gauss-Newton step around x̂t−1 and x̄t = ft−1(x̂t−1, ut−1)

123

on (6.1) leads to the well-known recursion [171]:

P̄t = Qt + Ft−1Pt−1F
T
t−1 (6.2)

Kt = P̄tH
T
t (Rt +HtP̄tH

T
t)

−1 (6.3)

Pt = (I −KtHt)P̄t (6.4)

µ̂t = Kt(yt − ht(x̄t)) (6.5)

x̂t = x̄t + µ̂t (6.6)

where Ft−1 = ∂xft−1(x̂t−1, ut−1) and Ht = ∂xht(x̄t). Here, x̂t is the most likely

estimate and Pt is the covariance uncertainty. In practice, at the next time step, x̂t

is used as the prior knowledge on the state.

We notice the similar structure of the costs of Problem (5.1) and Eq. (6.1), except

that the EKF only uses one measurement and does not include the control cost ℓj.

Hence, Eq. (5.1) can be seen as a maximization of the estimation log-likelihood up

to some cost terms. We will leverage this similarity to derive a risk-sensitive version

of the EKF. More precisely, we will add cost-dependent terms in the maximization

(6.1) in order for the filter to adapt to the control objective.

6.2 Risk-sensitive filter

We now introduce RS-EKF, which builds on the dynamic game defined in

Equation (5.1). First, we modify the game to account for typical assumptions made

for MPC while keeping the adversarial part that provides the risk-sensitive behavior.

Then, we show how the solution can be computed with a Gauss-Newton step similar

to the EKF, leading to an algorithm of similar complexity. Our formulation leads

124

to a modified update in the filter of which the standard EKF can be seen as a limit

case.

First, as for the EKF, we consider a history of measurements of length one.

Furthermore, we disregard future uncertainties and assume deterministic dynamic

equations for the future as is done in classical MPC formulations. Indeed, we

expect that the high-frequency re-planning will compensate for model discrepancies.

In the end, the problem is supposed to be adversarial only with respect to the

uncertainties related to the estimation. This can be written as:

min
ut:t+H−1

max
wt

max
wt−1

max
γt
Lt(ut, . . . , uH−1) (6.7)

− 1

2µ

(
γT
t R

−1
t γt + wT

t Q
−1
t wt + wT

t−1P
−1
t−1wt−1

)

s.t. xt−1 = x̂t−1 + wt−1, (6.8a)

xt = ft−1(xt−1, ut−1) + wt, (6.8b)

yt = ht(xt) + γt. (6.8c)

xj+1 = fj(xj, uj), t < j < T. (6.8d)

As presented in Chapter 5, one of the key features of the dynamic game is that

some of the constraints can be removed with an appropriate change of variable.

Indeed, we can use the equality constraints of Equations (6.8a), (6.8b) and (6.8c)

125

to replace the disturbance maximization into a maximization over xt−1, xt:

min
ut:t+H−1

max
xt−1,xt

Lt(ut, . . . , uH−1) (6.9)

− 1

2µ
(yt − ht(xt))

TR−1
t (yt − ht(xt))

− 1

2µ
(xt − ft−1(xt−1, ut−1))

TQ−1
t (xt − ft−1(xt−1, ut−1))

− 1

2µ
(xt−1 − x̂t−1)

TP−1
t−1(xt−1 − x̂t−1)

subject to xj+1 = fj(xj, uj), t < j < T,

By definition of the MAP [171], this can be written:

min
ut:t+H−1

max
xt−1,xt

Lt(ut, . . . , uH−1)−
1

µ
log(p(xt, xt−1|yt))

subject to xj+1 = fj(xj, uj), t < j < T. (6.10)

Problem (6.10) is intractable in the general case. However, by taking the concave-

convex assumption, the minimization and maximization can be interchanged ac-

cording to the minimax theorem. Consequently, the problem is equivalent to:

max
xt−1,xt

log(p(xt−1, xt|yt)) + µVt(xt), (6.11)

where Vt is the value function of the OCP:

Vt(xt) = min
ut:t+H−1

Lt(ut, . . . , uH−1) (6.12)

Note that in the simplification from Eq. (5.1) to Eq. (6.7), it is not necessary to

disregard future uncertainties as the value function could be the one resulting from

126

minimax DDP [134]. If µ = 0, we will obtain the unbiased estimate of Kalman

filtering and the estimate will be independent of the control objective. Otherwise,

if µ > 0, the term µV (xt) will bias the estimate towards regions with a higher value

function, which in turn will force the controller to be more conservative.

We now take a Gauss-Newton step on the objective of Eq. (6.11) around the

prior: x̂t−1 and x̄t = ft−1(x̂t−1, ut−1). Vt(xt) is independent of xt−1; therefore, as

shown in the appendix, the maximization over xt−1 can be simplified to:

max
xt

− 1

2
(xt − x̂t)

TP−1
t (xt − x̂t) (6.13)

+ µ
1

2
(xt − x̄t)

TV xx
t (xt − x̄t) + µ(xt − x̄t)

Tvxt

where x̂t and Pt are defined as in Eq. (6.6) and (6.4). where V xx
t (respectively vxt)

is the Hessian (respectively the gradient) of the value function.

Proof. By taking a quadratic approximation of the value function, the Gauss-

Newton step can be written as:

max
xt−1

max
xt

µ(xt − x̄t)
TV xx

t (xt − x̄t) + 2µ(xt − x̄t)
Tvxt

− (∆y −Ht∆xt)
TR−1

t (∆y −Ht∆xt)−∆xT
t−1P

−1
t−1∆xt−1

− (∆xt − Ft−1∆xt−1)
TQ−1

t (∆xt − Ft−1∆xt−1)) (6.14)

where ∆y = yt − h(x̂t), ∆xt−1 = xt−1 − x̂t−1, ∆xt = xt − x̂t. It can then be found

127

that xt−1 = Q̃−1q̃, where:

Q̃ = P−1
t−1 + F T

t−1Q
−1
t Ft−1 (6.15)

q̃ = −P−1
t−1x̂t−1 − F T

t−1Q
−1
t (xt − x̂t)− F T

t−1Q
−1
t Ft−1x̂t−1

by using the Woodbury lemma [171], it can be shown that:

max
xt

µ
1

2
(xt − x̄t)

TV xx
t (xt − x̄t) + µ(xt − x̄t)

Tvxt

− 1

2
(∆y −Ht∆xt)

TR−1
t (∆y −Ht∆xt)−

1

2
∆xT

t P̄
−1
t ∆xt

where P̄t is defined as in (6.2). Finally, using Pt = (HT
t R

−1
t Ht + P̄−1

t)−1 =

(I −KtHt)P̄t, we can show that:

max
xt

µ
1

2
(xt − x̄t)

TV xx
t (xt − x̄t) + µ(xt − x̄t)

Tvxt

− 1

2
(xt − x̂t − µ̂t)

TP−1
t (xt − x̂t − µ̂t) (6.16)

where Pt, µ̂t are defined as in (6.4), (6.5).

Those are typically provided by optimal control algorithms such as DDP. In

the end, the solution on the maximization over xt is:

x̂RS
t = x̄t + (I − µPtV

xx
t)−1(µ̂t + µPtv

x
t) (6.17)

Interestingly, if µ = 0, we recover the EKF. This was to be expected as, when µ

tends to zero, the solution of problem (5.1) is exactly the solution of the neutral

128

case where estimation and control are solved independently [186]. Otherwise,

the estimate is shifted towards regions with higher cost values. Importantly, the

magnitude of the shift depends on Pt the covariance matrix of the estimation.

Note that µ cannot be arbitrarily large as (I − µPt+1V
xx
t+1) needs to be positive

definite. Larger values of µ would make the min-max problem defined in Eq. (5.1)

ill-posed. More details on this limit value can be found in [186]. In the end, the

estimate is shifted towards Ptv
x
t , i.e. towards a region with a larger cost function,

and the magnitude of this shift is increased in the direction corresponding to large

eigenvalues of PtV
xx
t .

We obtained the solution to the maximization problem (6.10). Therefore, the

cost function can now be minimized with respect to the control inputs by taking

x̂RS
t as an initial condition of the optimal control problem, which can be solved, for

example, with DDP.

Algorithm 5 summarizes the estimation procedure. It can then be used to do

output-feedback MPC efficiently. At each time step, given a measurement, past

control input, and a quadratic approximation of the value function, a risk-sensitive

estimate can be computed. This estimate is then used to minimize the cost function

for MPC and the first control input is applied to the real system. Lastly, the

quadratic approximation of the value function at t+ 1 is saved as it will be used at

the next estimation step.

6.3 Experiments

This section presents simulation and real robot experiments to illustrate the

benefits of the proposed algorithm and demonstrate its applicability to real problems.

We study three test problems where we deploy the RS-EKF inside an MPC loop: a

129

Algorithm 5: Risk Sensitive EKF

Input: x̂t−1, ut−1, yt, Pt−1, Qt, Rt, Vt, vt
/* Predict */

1 P̄t ← Qt + Ft−1Pt−1F
T
t−1

2 x̄t ← f(x̂t−1, ut−1)
/* Classical Update */

3 Kt ← P̄tH
T
t (Rt +HtP̄tH

T
T)

−1

4 Pt ← (I −KtHt)P̄t

5 µ̂t ← Kt(yt − ht(x̄t))
/* Value function bias */

6 pxt ← (I − µPtV
x
t)

−1(µ̂t + µPtv
x
t)

7 x̂RS
t ← x̄t + pxt

Output: x̂RS
t , Pt

planar quadrotor with a load estimation task where we demonstrate qualitatively

that the RS-EKF can bring conservatism appropriately in phases of high uncertainty,

a push-recovery experiment on a 7-dof industrial manipulator on which we perform a

quantitative study and lastly, an external force estimation task on a real quadruped

robot to showcase the viability of the method on real systems. In each experiment,

we use the DDP implementation provided by Crocoddyl [120] to solve the optimal

control problem given the filter estimate. All the code is available online2.

6.3.1 Planar quadrotor

In this first scenario, we consider a planar quadrotor executing a load-carrying

task. The goal is to move the quadrotor from position (px, py) = (0, 0) to position

(1, 0) while carrying a load during the first half of the itinerary. The robot mass

is 2 kg and the mass of the load, which is unknown a priori, is 3 kg. The system

2https://github.com/machines-in-motion/risk-sensitive-EKF

https://github.com/machines-in-motion/risk-sensitive-EKF

130

dynamics is:

mp̈x = −(u1 + u2) sin(θ),

mp̈y = (u1 + u2) cos(θ)−mg,

mdθ̈ = r(u1 − u2), (6.18)

wherem is the mass of the robot, d the distance between the rotors, θ the orientation

of the quadrotor. u1 and u2 are the control inputs representing the force applied at

each rotor.

In this experiment, we want to estimate online the mass parameter that changes

in the middle of the flying phase. As it is standard in parameter identification

[179], we augment the system’s state with the unknown parameter and let it be

estimated recursively by the filter (EKF or RS-EKF). The state of the system is

thus: x =

(
px py θ ṗx ṗy θ̇ m

)T

and it is assumed that ṁ = 0 up to some

random Gaussian noise. The dynamics are integrated with an Euler scheme and

a time step of 0.05. We consider that P0 = 10−4I7, R = 10−4I3, and Q is a 7× 7

diagonal matrix where all terms are equal to 10−4 except the last one that we

set to 2 to represent the uncertainty in the changes of the load. Lastly, we set

µ = 4× 10−3. A stationary cost function of the following form is considered:

ℓ(x, u) = α1

(
∥px − pdesx ∥2 + ∥py − pdesy ∥2

)
+ α2∥θ∥2

+ α3

(
∥ṗx∥2 + ∥ṗy∥2 + ∥θ̇∥2

)
+ α4∥u− ū∥2 (6.19)

where ū =

(
mg
2
, mg

2

)T

and where: α1 = 100, α2 = 10, α3 = 0.01 and α4 = 0.1. We

consider a horizon of 20 nodes and re-plan at each new measurement, i.e. every

131

0.05s. Furthermore, we only measure: y =

(
px py θ

)T

to illustrate the estimator

capabilities. We simulate 4s with both output-feedback MPC controllers: the first

one relying on the standard EKF estimate and the second one relying on the

RS-EKF estimate.

Figure 6.1 shows the real mass variation and the estimates of both methods.

It can be seen that the RS-EKF is more reactive when the load is added or

dropped. The RS-EKF estimate spikes in the phases of uncertainty, which adds

some robustness. Those spikes can be explained by the fact that the uncertainty

increases on the components of the state that are important in the cost function.

In other words, some of the eigenvalues of PtV
xx
t become larger in the phases of

uncertainty, which augments the shift on the estimate as shown in Equation (6.17).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

1

2

3

4

5

m
 [k

g]

Ground truth
RS-EKF estimate
EKF estimate

Figure 6.1: Mass estimation for both EKF and RS-EKF.

Figure 6.2 depicts the trajectory in space for both methods. It can be seen that

the controller relying on the risk-sensitive estimate is more reactive. To evaluate

both controllers, we compute the average Mean Square Error (MSE) relative to

the reference trajectory. The MSE of RS-EKF is 0.0011, and the one of EKF is

0.0024. Hence, in that situation, the risk sensitivity brings a 54% improvement

132

in tracking. Furthermore, the average cost along the trajectory is equal to 0.0569

for the RS-EKF-based controller, while it is equal to 0.0880 for the EKF-based

controller, yielding a 35% improvement. This illustrates how a filter informed of

the cost objective can improve the controller’s performance.

0.0 0.2 0.4 0.6 0.8 1.0
px [m]

−0.1

0.0

0.1

p z
 [m

]

RS-EKF
EKF
reference

Figure 6.2: Quadrotor trajectory for both the EKF-MPC and the RS-EKF-MPC.

As it can be seen in both Figures 6.1 and 6.2, RS-EKF introduces a steady-state

error. This is because the estimation uncertainty never goes to zero due to the

nonzero diagonal term of the matrices Q and R. Intuitively, it makes sense that

the controller that plans for the worst is slightly sub-optimal in the phase with no

environment perturbation uncertainty. The risk-sensitive filter demonstrates its

benefits when there are perturbations in the environment as this corresponds to

phases where the most likely estimate might be far from reality. In the end, this

example illustrates the advantages of having a risk-sensitive controller which is

conservative only in phases with large environmental perturbations.

6.3.2 Kuka robot

In this example, we consider the 7-DoF torque-controlled KUKA LWR iiwa

R820 14. The 14-dimensional state is composed of the joint positions and velocities.

133

The control input is a 7-dimensional vector of the torque applied on each joint. The

continuous dynamics and its analytical derivatives are provided by Pinocchio [34].

The goal is to track a reference trajectory with the end effector. To do so, we

consider the following cost:

ℓk(xk, uk) = 10−2∥xk − x̄∥22 + 10−4∥uk − ū(xk)∥22

+ 102∥ptargetk − p̄(xk)∥22 (6.20)

ℓT (xT) = 102∥ptargetT − p̄(xk)∥22 + 10−2∥xk − x̄∥22,

x̄, the initial state, is used for the state regularization and is the concatenation of

the initial configuration

(
0.1 0.7 0 −1 −0.5 1.5 0

)T

and a 7-dimensional

zero vector corresponding to the velocity. ū(xk) is the gravity compensation term

given by the rigid body dynamics. p̄(xk) is the end-effector position obtained

through forward kinematics. ptargetk is defined such that the end effector follows

trajectories forming a circle in the xy plane. We use a horizon of 20 collocation

points with an integration step of 0.05s and re-plan at 500 Hz.

In this experiment, we aim to showcase that the risk-sensitive filter can bring

conservatism on phases with large perturbations from the environment, which we

simulate with large forces applied on the end effector. For the measurement model,

we assume that all the states are observed with high accuracy; therefore, we set

R = P0 = 10−6I14. However, to model the disturbances in the dynamics, we set

Q = 10−1I14. Finally, we consider µ = 7.5× 104.

Figure 6.3 depicts the end effector trajectory for both controllers and their

respective estimates. From time 1s to 2s, an external force of norm 80 is applied

on the end-effector on the x and z direction. Both controllers are pushed away

134

0.6

0.7
PE

E
x

 [m
]

EKF measurement
EKF estimate
RS-EKF measurement
RS-EKF estimate

−0.2

−0.1

0.0

PE
E

y
 [m

]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

0.55

0.60

PE
E

z
 [m

]

Unexpected push

Figure 6.3: End effector trajectory on a tracking task for both the EKF-MPC and
the RS-EKF-MPC. An unexpected force is applied between 1s and 2s.

from the reference trajectory. However, the risk-sensitive estimate overestimates

the distance between the reference and the end-effector. Consequently, the robot is

more aggressive in its response, and the end-effector remains closer to the reference.

This illustrates how taking a pessimistic estimate with respect to the cost improves

the running cost. Note that both estimates are originally state estimates but are

mapped to end effector space through the forward kinematics to draw Figure 6.3.

The fact that those estimates are pessimistic with respect to the task originally

defined in end effector space illustrates well how the method can handle nonlinear

dynamics and cost functions.

To validate the consistency of the filter, 10, 000 experiments are performed

with random external forces. The timing and direction of the forces are uniformly

sampled while the duration is fixed to 1s and the norm is fixed to 80. Figure 6.4

135

0.000

0.002

0.004

0.006

0.008
M

SE
EKF
RS-EKF

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time [s]

0.00

0.01

0.02

0.03

Co
st

Figure 6.4: Median MSE on the tracking over 10, 000 experiments with random
external disturbances. The envelope represents the 25th and 75th percentiles.

shows the median end effector error trajectory. On average, we obtain a 32%

improvement in the MSE. Furthermore, the mean cost is 22% lower with the

risk-sensitive filter.

6.3.3 Load estimation on a quadruped robot

In this experiment, we deploy the RS-EKF on a real 12-degree-of-freedom,

torque-controlled quadruped robot - Solo12 [75]. We demonstrate the superior

performance of the RS-EKF in estimating wrenches applied on Solo12 while it is

standing. We generate the standing behavior on Solo12 using a non-linear MPC

scheme. At each control cycle, we minimize a cost function using a centroidal

model to compute the optimal forces and trajectory that keep the robot’s base

at a desired height and orientation. Additionally, we use an augmented state to

136

−0.05

0.00

p z
 [m

] RS-EKF measurement
RS-EKF estimate
EKF measurement
EKF estimate

0

10

20

Fz ex
t[N

]

0 1 2 3 4 5 6
Time [s]

0.0

0.5

1.0

Co
st

Figure 6.5: Comparison of both methods after an external force of 20N is applied
by pulling the robot vertically. The vertical line indicates the moment when the
robot is dropped. The top sub-figure overlays the trajectory of both the EKF in
blue and RS-EKF in solid. The RS-EKF-based controller is more reactive to the
perturbation and returns to the reference sooner.

137

estimate external forces-torques applied to the robot [154]:

ċ =
1

m
l (6.21)

l̇ = mg +
Mc∑
i=1

Fi + Fext (6.22)

k̇ =
Mc∑
i=1

(pi − c)× Fi + τext (6.23)

Ḟext = 0, τ̇ext = 0 (6.24)

where m denotes the mass, Mc the number of end effectors in contact. Each pi

represents a contact location. Here, the state is x =

(
c l k Fext τext

)T

which

includes the Center of Mass (c), linear momentum (l), Angular Momentum (k)

and External Force-torques (Fext, τext). The measurement is y =

(
c l k

)T

up

to some noise. A motion capture system measures the base position, velocity, and

orientation, and an IMU gives the orientation velocity. Joint encodings are provided,

and their velocities are derived with finite differences. Then, given q, q̇, we can

compute c, l, k with Pinocchio [32, 34] and can then be used as a measurement by

the centroidal-based filter.

The control input, u =

(
F1 . . . FMc

)T

, is a Mc × 3 dimensional vector,

representing the force applied at each end effector. For this experiment, the robot

is standing; therefore, Mc = 4. The cost function for the OCP is:

ℓt(x, u) = (x− x⋆)THx(x− x⋆) + (u− u⋆)THu(u− u⋆)

+ 105
Mc∑
i=1

ℓbarrier(u3i)

ℓT (x) = (x− x⋆)THx(x− x⋆) (6.25)

138

where Hx = BlockDiag(102I3, 10I6) and Hu is a diagonal matrix where the diagonal

terms are made of Mc times the following sequence (10−4, 10−4, 10−6). Lastly,

ℓbarrier(u) =


u2 if u < 0

0 if 0 < u < 10

(u− 10)2 if u > 10

(6.26)

Here, x⋆ is designed to keep a constant height above the ground and to keep the

base horizontal, u⋆ is the gravity compensation. The reference desired angular

momentum for the OCP is adapted to bring the base back to a horizontal position.

We do this by computing k∗ = 1
T
log3(RtR

T
des), where Rt is the current base rotation

matrix, Rdes the rotation matrix corresponding to the quaternion qdes = [0, 0, 0, 1]

and T the horizon length. The log3 is a mapping from SE(3) to se(3). The nominal

angular momentum aims to bring the base back to the desired orientation over the

time horizon [129]. The ℓbarrier is a quadratic barrier function that creates a soft

constraint on the maximum forces the robot can apply on the ground.

We solve this OCP at 100 Hz using Croccodyl [120] and then track the desired

forces using a task space impedance dynamics QP [81] that we solve at 1 kHz

using [10].

min
f,τ,a

1

2
∥f − F∥2 (6.27)

subject to Ma+ g = JTf + ST τ + STffriction

Ja = −J̇ q̇,

where J is the robot contact Jacobian, M is the mass matrix, S is the selection

matrix that projects on the actuated joints, and g is the robot gravity vector at the

139

current time step. The static friction in each joint was estimated independently and

is approximately equal to 0.07. However, to keep a continuous model, we consider

ffriction = −0.07 2
π
arctan (2Sq̇). The two constraints ensure dynamics satisfaction

and model that the end effectors do not move. We update our state estimate (in-

cluding the external force torque) using the RS-EKF at 200 Hz with µ = 6. We also

use the EKF in place of the RS-EKF to compare the performance of a risk-sensitive

filter while keeping the update frequency the same. For both filters, we consider

the following parameters: P0 = Q = BlockDiag(10−3I6, 10
−4I3, 10

−1I3, 10
−2I3)

R = BlockDiag(10−4I3, 10
−2I3, 10

−4I3).

The first experiment ran on the robot is shown in Fig. 6.5. Here, the base

of Solo12 is pulled up (in the z direction) until an external estimate of 20N is

computed by both the filters (shown in bottom sub-figure 6.5 at time 1.4s with a

vertical line). The base is then released to let Solo12 recover and bring its base back

to the nominal desired height. The top sub-figure in Fig 6.5 shows an overlayed

pictorial comparison of Solo12 when the two filters (RS-EKF and EKF) are used

on the robot. Each frame corresponds to the state of Solo12 at the same time. The

opaque Solo12 image shows the state with RS-EKF, and the blue one shows the

EKF. This experiment shows that the RS-EKF helps the OCP to react quicker and

bring the base to the nominal location sooner. This happens because the RS-EKF

underestimates the base height in z as compared to EKF, which makes the OCP

generate higher ground reaction forces to bring the base up sooner. In the end,

both filters estimate similar external forces. As it can be seen in Fig. 6.5, the

external vertical force does not converge exactly to zero. We find experimentally

that this estimated force is due to friction. Lastly, as it can be seen, the cost of the

RS-EKF-based controller is lower after the robot is dropped. The average cost of

140

the RS-EKF is 0.065 while the one of the EKF is 0.130, which corresponds to a

50% improvement. This demonstrates how a filter aware of the cost objective can

improve the overall performance.

In order to get a more systematic comparison between the filters and get rid

of the human error, we perform two additional experiments where the filters are

initialized with exactly the same priors. First, we initialize both the filters with

a wrong prior on the external vertical force of 20N, while in reality, no force is

applied on the robot. This experiment creates an identical situation as the previous

experiment while also ensuring the very same initial conditions for the robot. The

results are shown in Fig 6.6, where the RS-EKF still performs better. Also, the

performance is similar to the first experiment. In that experiment, we obtain a

62.9% improvement in the average cost.

−0.15

−0.10

−0.05

0.00

p z
 [m

]

RS-EKF measurement
RS-EKF estimate
EKF measurement
EKF estimate

0 1 2 3 4 5 6
Time [s]

0

10

20

Fz ex
t[N

]

Figure 6.6: Comparison of the RS-EKF and EKF when initialized with a wrong
prior of 20N on the estimated vertical external force.

Finally, we replicate the previous experiment but now, initialize the filters with

a wrong prior of −10 N on the external force, while, in fact, there is no force on

141

the robot. The RS-EKF reacts sooner than EKF once again. It brings the base of

Solo12 back to the desired location sooner than EKF, as can be seen in Fig 6.7. In

that experiment, we obtain a 58.9% improvement in the average cost.

−0.025

0.000

0.025

0.050

p z
 [m

]

RS-EKF measurement
RS-EKF estimate
EKF measurement
EKF estimate

0 1 2 3 4 5 6
Time [s]

−10

−5

0

5

Fz ex
t[N

]

Figure 6.7: Comparison of the RS-EKF and EKF when initialized with a wrong
prior of −10 N on the estimated vertical external force.

6.4 Conclusion

To conclude, we have introduced a risk-sensitive variation of the EKF based on

the zero-sum game introduced by Whittle [186]. The filter biases estimates towards

high regions of the control cost which result in more robust controllers. Furthermore,

the complexity of this filter is similar to the EKF. Lastly, we have demonstrated on

several robotics problems, both in simulation and on real hardware, the benefits of

this filter for output-feedback MPC. Importantly, we have shown that the proposed

filter makes the controller more conservative in phases of high uncertainty leading

to better overall control performance.

142

Chapter 7

Conclusion

In this thesis, we investigated how to fully leverage the promises of MPC on

torque-controlled robots.

Part I focused on state-feedback MPC and proposed several contributions to

obtain safe and globally optimal plans. In Chapter 2, we showed that standard

optimization techniques can already push the limits of closed-loop MPC for torque-

controlled robots. By including hard constraints in the MPC, we are now able to

ensure safety. In Chapter 3, we introduced a way to overcome the local behavior of

MPC by combining constrained TO with RL by using a learned value function as a

terminal cost of the MPC. Chapter 4 introduced how to perform force feedback in

Model Predictive Control in order to interact accurately with their environment. Our

experimental results show that current optimization-based control and estimation

techniques are sufficient to incorporate force sensors in model-predictive controllers.

Part II investigated how to endow Model Predictive Control with the perception

uncertainty information. In Chapters 5 and 6, we introduced efficient numerical

methods to perform risk-sensitive output feedback Model Predictive Control. While

143

the studied formulations were already well established in the control community, we

showed how to implement them efficiently in order to enable them at the frequency

required for torque control robots. To the best of our knowledge, we provided the

first demonstration on a real robot that a risk-sensitive controller can outperform a

neutral controller.

In summary, we presented several contributions to overcome the current limi-

tations of MPC on torque controlled robots. Specifically, we proposed to endow

MPC with safety, global reasoning, force-feedback, and perception uncertainty

information.

While the presented contributions can be used to design controllers that reason

online about novel situations despite perception uncertainty, one could argue that

some work remains to be done to deploy robots in complex environments such

as the construction sites depicted in Figure 1.1. Clearly, a robot would require

more sensory information to navigate such settings. While we have investigated

the use of force-feedback in Chapter 4, it should ideally be used in combination

with vision. Furthermore, while Chapter 3 studied how to obtain a global solution

using offline reasoning, it would be interesting to further investigate how to solve

global optimization problems online. Finally, even though it is crucial to have the

ability to solve complex nonlinear optimization problems online to adapt to new

situations, this can be a waste of computational resources in known situations. For

known settings, a policy could be used. The recent successes of RL [22, 168] in

locomotion [1, 84] and manipulation [37, 79] demonstrated that a controller based

on neural networks can achieve impressive results. Ideally, a robot should know how

to transition from offline to online reasoning when it encounters a novel situation.

Automatizing this transition appears as an open problem.

144

Appendix A

Stagewise Implementations of

Sequential Quadratic

Programming for

Model-Predictive Control

Let’s consider the following Quadratic Program:

min
x1:T ,u0:T−1

xT
TQTxT + xT

T qT +
T−1∑
k=0

xk

uk


T Qk Sk

ST
k Rk


xk

uk

+

qk
rk


T xk

uk

 (A.1)

subject to x0 = 0,

xk+1 = Akxk +Bkuk + γk+1, 0 ≤ k < T.

145

The associated Lagrangian has the following form:

L(x1:T , u0:T−1, λ1:T) =xT
TQTxT + xT

T qT

+
T−1∑
k=0

xk

uk


T Qk Sk

ST
k Rk


xk

uk

+

qk
rk


T xk

uk


− λT

k+1(xk+1 − Akxk −Bkuk − γk+1) (A.2)

The KKT condition can be written as a set of linear equations:

QTxT + qT = λT (A.3)

Qkxk + Skuk + qk + AT
k λk+1 = λk ∀k ≤ 1 (A.4)

Rkuk + ST
k xk + rk +BT

k λk+1 = 0 ∀k < T (A.5)

xk+1 = Akxk +Bkuk + γk+1. (A.6)

Proposition 7. The KKT conditions can be written as a block tri-diagonal sym-

metric matrix equation. More precisely:



Γ1 MT
1 0 0 · · · 0

M1 Γ2 MT
2 0 · · · 0

0 M2 Γ3 MT
3 · · · 0

0 0 M3 Γ4
. . . 0

...
...

...
.

...

0 0 0 0
. . . ΓT





s1

s2

s3

s4
...

sT


=



g1

g2

g3

g4
...

gT


(A.7)

where:

146

Γk =


Rk−1 0 −BT

k−1

0 Qk I

−Bk−1 I 0

, Mk =


0 ST

k 0

0 0 0

0 −Ak 0



and sk =


uk−1

xk

−λk

, gk =


−rk−1

−qk

γk

 (A.8)

.

Proof. We find that:

• For k = 1, as x0 = 0:

Γ1s1 +MT
1 s2 =


R0u0 +BT

0 λ1

Q1x1 − λ1

−B0u0 + x1

+


0

S1u1 + AT
1 λ2

0



=


R0u0 + ST

0 x0 +BT
0 λ1

Q1x1 − λ1 + S1u1 + AT
1 λ2

−A0x0 −B0u0 + x1

 =


−r0

−q1

γ1

 (A.9)

• For 1 < k < T :

147

Mk−1sk−1 + Γksk +MT
k sk+1 =

ST
k−1xk−1

0

−Ak−1xk−1

+


Rk−1uk−1 +BT

k−1λk

Qkxk − λk

−Bk−1uk−1 + xk

+


0

Skuk + AT
k λk+1

0



=


−rk−1

−qk

γk

 = gk (A.10)

• For k = T :

MT−1sT−1 + ΓT sT =


ST
T−1xT−1

0

−AT−1xT−1

+


RT−1uT−1 +BT

T−1λT

QTxT − λT

−BT−1uT−1 + xT

 =


−rT−1

−qT

γT

 = gT

(A.11)

Proposition 8. By applying Thomas algorithm, we recover the well-known Riccati

recursions. Specifically, the backward pass can be done by initializing VT = QT

and vT = qT , and then by applying the following equations:

hk = rk +BT
k (vk+1 + Vk+1γk+1) (A.12)

Gk = ST
k +BT

n Vk+1Ak Kk = −H−1
k Gk

Hk = Rk +BT
k Vk+1Bk kk = −H−1

k hk

148

Vk = Qk + AT
k Vk+1Ak −KT

k HkKk (A.13)

vk = qk +KT
k rk + (Ak +KkBk)

T (vk+1 + Vk+1γk+1)

Then, the forward pass initializes ∆x0 = 0 and unrolls the linearized dynamics:

∆xk+1 = (Ak +BkKk)∆xk +Bkkk + γk+1 (A.14)

∆uk = Kk∆xk + kk (A.15)

λk = Vk∆xk + vk (A.16)

Proof. For this proof, we will extensively use the following lemma:

Lemma A.0.1.


Rk 0 −BT

k

0 Vk+1 I

−Bk I 0


−1

=


H−1

k+1 H−1
k+1B

T
k −H−1

k+1B
T
k Vk+1

BkH
−1
k+1 BkH

−1
k+1B

T
k I −BkH

−1
k+1B

T
k Vk+1

−Vk+1BkH
−1
k+1 I − Vk+1BkH

−1
k+1B

T
k −Vk+1(I −BkH

−1
k+1B

T
k Vk+1)



=


0 0 0

0 0 I

0 I −Vk+1

+


H−1

k+1 0 0

0 BkH
−1
k+1 0

0 0 −Vk+1BkH
−1
k+1



I BT

k −BT
k Vk+1

I BT
k −BT

k Vk+1

I BT
k −BT

k Vk+1


where Hk = Rk +BT

k Vk+1Bk

Thomas algorithm uses a forward recursion in order to find a equivalent linear

149

system of the form:



I 0 0 0 · · · 0

Γ̄−1
2 M1 I 0 0 · · · 0

0 Γ̄−1
3 M2 I 0 · · · 0

0 0 Γ̄−1
4 M3 I

. . . 0
...

...
...

.
...

0 0 0 0
. . . I





s1

s2

s3

s4
...

sT


=



ḡ1

ḡ2

ḡ3

ḡ4
...

ḡT


(A.17)

Then, a forward recursion recovers the sequence: s1, · · · sT . This can be formal-

ized in the following way:

Algorithm 6: Thomas algorithm

1 Γ̄T ← ΓT

2 ḡT ← Γ−1
T gT

/* backward pass */

3 for k ← 1 to T − 1 do
4 Γ̄k ← Γk −MT

k Γ̄
−1
k+1Mk

5 ḡk ← Γ̄−1
k (gk −MT

k ḡk+1)

/* forward pass */

6 s1 ← ḡ1
7 for k ← 1 to T − 1 do
8 sk+1 ← ḡk+1 − Γ̄−1

k+1Mksk

Let’s now show by recursion that:

Γ̄k =


Rk−1 0 −BT

k−1

0 Vk I

−Bk−1 I 0

 (A.18)

150

and that:

ḡk = Γ̄−1
k


−rk−1

−vk

γk

 (A.19)

Backward pass:

• k = T

As VT = QT and vT = qT by definition, the property is true for k = T .

• If the property is true for k + 1,

Γ̄k = Γk −MT
k Γ̄

−1
k+1Mk (A.20)

=


Rk−1 0 −BT

k−1

0 Qk I

−Bk−1 I 0



−


0 0 0

Sk 0 −AT
k

0 0 0




Rk 0 −BT
k

0 Vk+1 I

−Bk I 0


−1 

0 ST
k 0

0 0 0

0 −Ak 0



=


Rk−1 0 −BT

k−1

0 Vk I

−Bk−1 I 0



151

where

Vk = Qk + AT
k Vk+1Ak − SkH

−1
k+1(S

T
k +BT

k Vk+1Ak) (A.21)

− AT
k Vk+1BkH

−1
k+1(S

T
k +BT

k Vk+1Ak)

= Qk + AT
k Vk+1Ak − (Sk + AT

k Vk+1Bk)(Rk +BT
k Vk+1Bk)

−1(ST
k +BT

k Vk+1Ak)

152

then, we have:

Γ̄kḡk − gk = −MT
k ḡk+1

=


0 0 0

Sk 0 −AT
k

0 0 0

 Γ̄−1
k+1


rk

vk+1

−γk+1



=


0 0 0

Sk 0 −AT
k

0 0 0




0 0 0

0 0 I

0 I −Vk−1



+


H−1

k+1 0 0

0 BkH
−1
k+1 0

0 0 −Vk+1BkH
−1
k+1



I BT

k −BT
k Vk+1

I BT
k −BT

k Vk+1

I BT
k −BT

k Vk+1





rk

vk+1

−γk+1



=



0 0 0

0 −AT
k AT

k Vk+1

0 0 0



+


0 0 0

SkH
−1
k+1 0 AT

k Vk+1BkH
−1
k+1

0 0 0



I BT

k −BT
k Vk+1

I BT
k −BT

k Vk+1

I BT
k −BT

k Vk+1





rk

vk+1

−γk+1



=




0

−AT
k vk+1 − AT

k Vk+1γk+1

0



+


0 0 0

SkH
−1
k+1 0 AT

k Vk+1BkH
−1
k+1

0 0 0



rk +BT

k vk+1 +BT
k Vk+1γk+1

rk +BT
k vk+1 +BT

k Vk+1γk+1

rk +BT
k vk+1 +BT

k Vk+1γk+1




153

and we get:

vk = qk + AT
k (vk+1 + Vk+1γk+1)

− (Sk + AT
k Vk+1Bk)H

−1
k+1(rk +BT

k vk+1 +BT
k Vk+1γk+1)

= qk + AT
k (vk+1 + Vk+1γk+1) +KT

k (rk +BT
k vk+1 +BT

k Vk+1γk+1)

= qk +KT
k rk + (Ak +BkKk)

T (vk+1 + Vk+1γk+1) (A.22)

Hence, the property is also true for k.

Forward pass:

• k = 1:

s1 = ḡ1 (A.23)

implies that:

154


u0

x1

λ1

 = Γ̄−1
1


−r0

−v1

γ1



=



0 0 0

0 0 I

0 I −V1

+


H−1

0 0 0

0 B0H
−1
0 0

0 0 −V1B0H
−1
1



I BT

0 −BT
0 V1

I BT
0 −BT

0 V1

I BT
0 −BT

0 V1




−r0

−v1

γ1



=


0

γ1

−v1 − V1γ1

−

H−1

0 0 0

0 B0H
−1
0 0

0 0 −V1B0H
−1
1



r0 +BT

0 (v1 + V1γ1)

r0 +BT
0 (v1 + V1γ1)

r0 +BT
0 (v1 + V1γ1)



=


k0

B0k0 + γ1

−V1B0k0 − V1γ1 − v1

 (A.24)

Hence, λ1 = −V1x1 − v1

• k ≥ 1:

Then:

s̄k = ḡk − Γ̄−1
k Mk−1sk−1 (A.25)

155

implies that:


uk

xk+1

λk+1

 = Γ̄−1
k+1(


−rk

−vk+1

γk+1

−Mksk)

=



0 0 0

0 0 I

0 I −Vk+1



+


H−1

k+1 0 0

0 BkH
−1
k+1 0

0 0 −Vk+1BkH
−1
k+1



I BT

k −BT
k Vk+1

I BT
k −BT

k Vk+1

I BT
k −BT

k Vk+1




−rk − ST

k xk

−vk+1

γk+1 + Akxk



=


kk +Kkxk

(Ak +BkKk)xk +Bkkk + γk+1

Vk+1((Ak +BkKk)xk +Bkkk + γk+1) + vk+1

 (A.26)

and we get:

λk+1 = Vk+1xk+1 + vk+1 (A.27)

156

Appendix B

Stagewise Newton Method for

Dynamic Game Control with

Imperfect State Observation

B.1 Problem statement

Given a sequence of measurements y1:t, a sequence of control inputs u0:t−1, and

a prior on the initial state x̂0, we study the following minimization-maximization

problem:

min
ut:T−1

max
w0:T

max
γ1:t

T−1∑
j=0

ℓj(xj, uj) + ℓT (xT) (B.1)

− 1

2µ

(
ωT
0 P

−1ω0 +
t∑

j=1

γT
j R

−1
j γj +

T∑
j=1

wT
j Q

−1
j wj

)

157

subject to the constraints: x0 = x̂0 + w0, (B.2a)

xj+1 = fj(xj, uj) + wj+1, 0 ≤ j < T, (B.2b)

yj = hj(xj) + γj, 1 ≤ j ≤ t. (B.2c)

where µ > 0. xj is the state, ωj the process disturbance, γj the measurement

disturbance, T the time horizon, t the current time. fj, the transition model,

hj, measurement model and ℓj, the controller’s cost are assumed to be C2. Rj

the measurement uncertainty, Qj the process uncertainty and P the initial state

uncertainty are positive semi-definite matrices. Instead of searching for a global

solution, we search for a stationary point of the following unconstrained cost.

J(x0:T , ut:T−1) =
T−1∑
j=0

ℓj(xj, uj) + ℓT (xT)

− 1

2µ
(x0 − x̂0)

TP−1(x0 − x̂0)

− 1

2µ

t∑
j=1

(yj − hj(xj))
TR−1

j (yj − hj(xj))

− 1

2µ

T−1∑
j=0

(xj+1 − fj(xj, uj))
TQ−1

j+1(xj+1 − fj(xj, uj))

158

B.2 Characterization of the Newton step

Let’s consider a step

p =

 px0:T

put:T−1

 , (B.3)

we know that the Newton step p satisfies:

Hp = −∇J, (B.4)

where

H =


∂2J

∂x0:T∂x0:T

∂2J

∂x0:T∂ut:T−1

∂2J

∂ut:T−1∂x0:T

∂2J

∂ut:T−1∂ut:T−1

 (B.5)

and

∇J =


∂J

∂x0:T
∂J

∂ut:T−1

 (B.6)

159

And we use the following notation for the Hessian:

∂2J

∂x0:T∂x0:T

=



∂2J

∂x2
0

∂2J

∂x0 ∂x1

· · · ∂2J

∂x0 ∂xT

∂2J

∂x1 ∂x0

∂2T

∂x2
1

· · · ∂2J

∂x1 ∂xT

...
...

. . .
...

∂2J

∂xT ∂x0

∂2J

∂xT ∂x1

· · · ∂2J

∂x2
T


(B.7)

Note that: ∂2J
∂xi∂xj

∈ Rnx×nx and ∂2J
∂xi∂uj

∈ Rnx×nu . To simplify the derivations,

we define the gaps:

γk := yk − hk(xk) (B.8)

wk+1 := xk+1 − fk(xk, uk) (B.9)

w0 := x0 − x̂0 (B.10)

In the rest of this section, we show how to derive the Newton step sequentially,

namely without inverting the Hessian matrix. To do so, let’s retrieve the analytical

expression of the gradient and Hessian of J . We assume that t < T , otherwise,

there is no control input. However, we note that if t = T , the past stress recursion

could be derived similarly. First, we derive the gradient with respect to every state

variable and every control inputs:

• k = 0

∂J

∂x0

(x0:T , ut:T−1) = ℓx0 − µ−1P−1w0 + µ−1fx
0
TQ−1

1 w1

160

• ∀1 ≤ k ≤ t− 1,

∂J

∂xk

(x0:T , ut:T−1) = ℓxk − µ−1Q−1
k wk + µ−1fx

k
TQ−1

k+1wk+1 + µ−1hx
k
TR−1

k γk

• k = t

∂J

∂xt

(x0:T , ut:T−1) = ℓxt − µ−1Q−1
t wt + µ−1fx

t
TQ−1

t+1wt+1 + 1t≥1µ
−1hx

t
TR−1

t γt

• ∀t+ 1 ≤ k ≤ T − 1,

∂J

∂xk

(x0:T , ut:T−1) = ℓxk − µ−1Q−1
k wk + µ−1fx

k
TQ−1

k+1wk+1

• k = T

∂J

∂xT

(x0:T , ut:T−1) = ℓxT − µ−1Q−1
T wT

and

∀t ≤ k ≤ T − 1,
∂J

∂uk

(ut:T , x0:T) = ℓuk + µ−1fu
k
TQ−1

k+1wk+1

Next, we derive each term of the Hessian. All the terms that are not equal to

zero are of the form:

161

∂2J

∂xk∂xk

=



ℓxx0 − µ−1P−1 − µ−1fx
0
TQ−1

1 fx
0 + µ−1fxx

0
TQ−1

1 w1 k = 0

ℓxxk − µ−1Q−1
k − µ−1fx

k
TQ−1

k+1f
x
k + µ−1fxx

k
TQ−1

k+1wk+1

−µ−1hx
k
TR−1

k hx
k + µ−1hxx

k
TR−1

k γk 1 ≤ k ≤ t

ℓxxk − µ−1Q−1
k − µ−1fx

k
TQ−1

k+1f
x
k + µ−1fxx

k
TQ−1

k+1wk+1 t < k < T

ℓxxT − µ−1Q−1
T k = T

∂2J

∂xk+1∂xk

= µ−1Q−1
k+1f

x
k (B.11)

∂2J

∂xk−1∂xk

= µ−1fxT

k−1Q
−1
k (B.12)

∂2J

∂uk−1∂xk

= µ−1fuT

k−1Q
−1
k (B.13)

∂2J

∂uk∂xk

= ℓuxk − µ−1fu
k
TQ−1

k+1f
x
k + µ−1wk+1

TQ−1
k+1f

ux
k (B.14)

∂2J

∂xk∂uk

= ℓxuk − µ−1fx
k
TQ−1

k+1f
u
k + µ−1wk+1

TQ−1
k+1f

xu
k (B.15)

∂2J

∂xk+1∂uk

= µ−1Q−1
k+1f

u
k (B.16)

∂2J

∂uk∂uk

= ℓuuk − µ−1fu
k
TQ−1

k+1f
u
k + µ−1wk+1

TQ−1
k+1f

uu
k (B.17)

where fux
k is a tensor and wT

k+1Q
−1
k+1f

ux
k is a matrix. More precisely,

(fux
k)i,j,l =

∂2(fk)l
∂ui∂xk

(B.18)

162

where (fk)l is the l component of fk. And, the product is defined as follows:

(wk+1
TQ−1

k+1f
ux
k)i,j =

n∑
l=1

(fux
k)i,j,l(Q

−1
k+1w

i
k+1)l (B.19)

To simplify, let’s denote for all k < T :

ℓ̄xxk = ℓxxk + µ−1wk+1
TQ−1

k+1f
xx
k + µ−11k≤tγk

TR−1
k hxx

k

ℓ̄xuk = ℓ̄ux
T

k = ℓxuk + µ−1wk+1
TQ−1

k+1f
xu
k

ℓ̄uuk = ℓuuk + µ−1wk+1
TQ−1

k+1f
uu
k (B.20)

163

Therefore, Equation (B.5) is equivalent to:

• If k = 0 and if t ≥ 1:

∂2J

∂x0∂x0

px0 +
∂2J

∂x0∂x1

px1 = −
∂J

∂x0

(B.21)

• ∀ k = 1, . . . , t− 1:

∂2J

∂xk∂xk−1

pxk−1
+

∂2J

∂xk∂xk

pxk
+

∂2J

∂xk∂xk+1

pxk+1
= − ∂J

∂xk

(B.22)

• k = t:

∂2J

∂xt∂xt−1

pxt−11t≥1 +
∂2J

∂xt∂xt

pxt +
∂2J

∂xt∂xt+1

pxt+1 +
∂2J

∂xt∂ut

put = −
∂J

∂xt

(B.23)

• ∀ k = t+ 1, . . . , T − 1:

∂2J

∂xk∂xk−1

pxk−1
+

∂2J

∂xk∂xk

pxk
+

∂2J

∂xk∂xk+1

pxk+1
+

∂2J

∂xk∂uk−1

puk−1

+
∂2J

∂xk∂uk

puk
= − ∂J

∂xk

(B.24)

• k = T :

∂2J

∂xT∂xT−1

pxT−1
+

∂2J

∂xT∂xT

pxT
+

∂2J

∂xT∂uT−1

puT−1
= − ∂J

∂xT

(B.25)

• ∀ k = t, . . . , T − 1:

∂2J

∂uk∂xk

pxk
+

∂2J

∂uk∂xk+1

pxk+1
+

∂2J

∂uk∂uk

puk
= − ∂J

∂uk

(B.26)

164

B.3 Future stress

In this section, we derive the recursion for the future stress:

• From (B.24), ∀ k = t+ 1, . . . , T − 1:

µ−1Q−1
k fx

k−1pxk−1

+
(
ℓ̄xxk − µ−1Q−1

k − µ−1fx
k
TQ−1

k+1f
x
k

)
pxk

+ µ−1fx
k
TQ−1

k+1pxk+1

+ µ−1Q−1
k fu

k−1puk−1

+
(
ℓ̄xuk − µ−1fx

k
TQ−1

k+1f
u
k

)
puk

+ ℓxk − µ−1Q−1
k wk + µ−1fx

k
TQ−1

k+1wk+1 = 0 (B.27)

• From (B.25), for k = T :

µ−1Q−1
T fx

T−1pxT−1
+
(
ℓxxT − µ−1Q−1

T

)
pxT

+ µ−1Q−1
T fu

T−1puT−1

+ ℓxT − µ−1Q−1
T wT = 0 (B.28)

• From (B.26), ∀ k = t, . . . , T − 1:

(
ℓ̄uxk − µ−1fu

k
TQ−1

k+1f
x
k

)
pxk

+ µ−1fu
k
TQ−1

k+1pxk+1

+
(
ℓ̄uuk − µ−1fu

k
TQ−1

k+1f
u
k

)
puk

+ ℓuk + µ−1fu
k
TQ−1

k+1wk+1 = 0 (B.29)

165

We define

∀ k = t, . . . , T − 1 λk+1 := µ−1Q−1
k+1

(
pxk+1

− fx
k pxk

− fu
k puk

+ wk+1

)
(B.30)

and find that (B.27), (B.29) and (B.28) can be written:

∀ k = t+ 1 . . . T − 1 ℓ̄xxk pxk
+ ℓ̄xuk puk

+ ℓxk + fx
k
Tλk+1 = λk (B.31)

∀ k = t . . . T − 1 ℓ̄uxk pxk
+ ℓ̄uuk puk

+ ℓuk + fu
k
Tλk+1 = 0 (B.32)

ℓxxT pxT
+ ℓxT = λT (B.33)

Proposition 9.

k = t, . . . , T − 1, Vkpxk
+ vk = ℓ̄xxk pxk

+ ℓ̄xuk puk
+ ℓxk + fx

k
Tλk+1

VTpxT
+ vT = λT (B.34)

166

where Vk and vk are solutions of the backward recursion:

Γk+1 = I − µVk+1Qk+1 (B.35)

Quu = ℓ̄uuk + fu
k
TΓ−1

k+1Vk+1f
u
t

Qux = ℓ̄uxk + fu
k
TΓ−1

k+1Vk+1f
x
k

Qu = ℓuk + fu
k
TΓ−1

k+1 (vk+1 − Vk+1wk+1)

Gk = −Q−1
uuQux

gk = −Q−1
uuQu

Vk = ℓ̄xxk + fx
k
TΓ−1

k+1Vk+1f
x
k +QT

uxGk

vk = ℓxk + fx
k
TΓ−1

k+1 (vk+1 − Vk+1wk+1) +QT
uxgk

with the terminal condition:

VT = ℓxxT

vT = ℓxT (B.36)

Furthermore,

pxk+1
= (I − µQk+1Vk+1)

−1 (fx
k pxk

+ fu
k puk

+ µQk+1vk+1 − wk+1)

puk
= Gkpxk

+ gk (B.37)

Proof. Clearly:

VT = ℓxxT

vT = ℓxT (B.38)

167

Let t ≤ k ≤ T−1. Assuming the property is true at k+1, then, from (B.31) and

(B.33), we must have λk+1 = Vk+1pxk+1
+ vk+1. Now, let’s show that the property

also holds for the index k. From (B.30), we have:

Vk+1pxk+1
+ vk+1 = µ−1Q−1

k+1

(
pxk+1

− fx
k pxk

− fu
k puk

+ wk+1

)
(I − µQk+1Vk+1) pxk+1

= fx
k pxk

+ fu
k puk

+ µQk+1vk+1 − wk+1 (B.39)

We define Γk+1 := (I − µVk+1Qk+1)
−1 and find that:

λk+1 = Vk+1 (I − µQk+1Vk+1)
−1 (fx

k pxk
+ fu

k puk
+ µQk+1vk+1 − wk+1) + vk+1

= Γ−1
k+1Vk+1 (f

x
k pxk

+ fu
k puk

+ µQk+1vk+1 − wk+1) + vk+1

= Γ−1
k+1Vk+1 (f

x
k pxk

+ fu
k puk

− wk+1) + Γ−1
k+1vk+1 (B.40)

as

Vk+1 (I − µQk+1Vk+1)
−1 =

(
V −1
k+1 − µQk+1

)−1
= (I − µVk+1Qk+1)

−1 Vk+1 (B.41)

Now from (B.32)

ℓ̄uxk pxk
+ ℓ̄uuk puk

+ ℓuk (B.42)

+ fu
k
T
(
Γ−1
k+1Vk+1 (f

x
k pxk

+ fu
k puk

− wk+1) + Γ−1
k+1vk+1

)
= 0

(
ℓ̄uuk + fu

k
TΓ−1

k+1Vk+1f
u
k

)
puk

+
(
ℓ̄uxk + fu

k
TΓ−1

k+1Vk+1f
x
k

)
pxk

+ ℓuk + fu
k
T
(
−Γ−1

k+1Vk+1wk+1 + Γ−1
k+1vk+1

)
= 0 (B.43)

168

which can be written

puk
= Gkpxk

+ gk (B.44)

where

Quu = ℓ̄uuk + fu
k
TΓ−1

k+1Vk+1f
u
k (B.45)

Qux = ℓ̄uxk + fu
k
TΓ−1

k+1Vk+1f
x
k

Qu = ℓuk + fu
k
TΓ−1

k+1vk+1 − fu
k
TΓ−1

k+1Vk+1wk+1

Gk = −Q−1
uuQux

gk = −Q−1
uuQu

Finally, we get:

ℓ̄xxk pxk
+ ℓ̄xuk puk

+ ℓxk + fx
k
Tλk+1

= ℓ̄xxk pxk
+ ℓ̄xuk puk

+ ℓxk + fx
k
TΓ−1

k+1 (Vk+1 (f
x
k pxk

+ fu
k puk

− wk+1) + vk+1)

= ℓ̄xxk pxk
+Qxupuk

+ ℓxk + fx
k
TΓ−1

k+1 (Vk+1 (f
x
k pxk

− wk+1) + vk+1)

= Vkpxk
+ vk (B.46)

with:

Vk = ℓ̄xxk + fx
k
TΓ−1

k+1Vk+1f
x
k −QxuQ

−1
uuQux (B.47)

vk = ℓxk + fx
k
TΓ−1

k+1vk+1 − fx
k
TΓ−1

k+1Vk+1wk+1 −QxuQ
−1
uuQu

169

B.4 Past stress

In this section, we derive the recursion for the past stress. Note that those

derivations are valid only if t ≥ 1. First, we define, ∀ k = 0, . . . , t− 1:

λ̄k := µ−1fx
k
TQ−1

k+1f
x
k pxk

− ℓ̄xxk pxk
− µ−1fx

k
TQ−1

k+1(wk+1 + pxk+1
)− ℓxk (B.48)

• From (B.21), for k = 0:

(
ℓ̄xx0 − µ−1P−1 − µ−1fx

0
TQ−1

1 fx
0

)
px0

+µ−1fx
0
TQ−1

1 px1 + ℓx0 − µ−1P−1w0 + µ−1fx
0
TQ−1

1 w1 = 0

−µ−1P−1(px0 + w0) = λ̄0 (B.49)

• From (B.22), ∀ k = 1, . . . , t− 1:

µ−1Q−1
k fx

k−1pxk−1
+
(
ℓ̄xxk − µ−1Q−1

k − µ−1fx
k
TQ−1

k+1f
x
k − µ−1hx

k
TR−1

k hx
k

)
pxk

+ µ−1fx
k
TQ−1

k+1pxk+1
+ ℓxk − µ−1Q−1

k wk + µ−1fx
k
TQ−1

k+1wk+1 + µ−1hx
k
TR−1

k γk = 0

Q−1
k fx

k−1pxk−1
−
(
Q−1

k + hx
k
TR−1

k hx
k

)
pxk
−Q−1

k wk + hx
k
TR−1

k γk = µλ̄k (B.50)

170

Proposition 10. ∀k = 1, . . . , t

Q−1
k fx

k−1pxk−1
−
(
Q−1

k + hx
k
TR−1

k hx
k

)
pxk
−Q−1

k wk + hx
k
TR−1

k γk = −P−1
k (pxk

− µ̂k)

−P−1(px0 + w0) = −P−1
0 (px0 − µ̂0)

(B.51)

where Pk and µ̂k are solutions of the forward recursion:

Ek+1 = P−1
k + fx

k
TQ−1

k+1f
x
k − µℓ̄xxk

P̄k+1 = Qk+1 + fx
k (P

−1
k − µℓ̄xxk)−1fx

k
T

Kk+1 = P̄k+1h
xT

k+1(Rk+1 + hx
k+1P̄k+1h

xT

k+1)
−1

Pk+1 = (I −Kk+1h
x
k+1)P̄k+1

µ̂k+1 = (I −Kk+1h
x
k+1)(f

x
k µ̂k − wk+1) +Kk+1γk+1

+ µPk+1Q
−1
k+1f

x
kE

−1
k+1(ℓ̄

xx
k µ̂k + ℓxk) (B.52)

with the initialization:

P0 = P

µ̂0 = x̂0 − xi
0 (B.53)

Furthermore:

∀k = 0, . . . , t− 1, pxk
= E−1

k+1

(
fx
k
TQ−1

k+1(wk+1 + pxk+1
) + P−1

k µ̂k + µℓxk
)

(B.54)

171

Proof. The initialization is clear:

P0 = P (B.55)

µ̂0 = −w0 (B.56)

If the prop is true at time k, from (B.49) and (B.50), we must have λ̄k =

−µ−1P−1
k (pxk

− µ̂k). Now let’s show that the property holds for k+1. From (B.48),

we have:

−µ−1P−1
k (pxk

− µ̂k) =µ−1fx
k
TQ−1

k+1f
x
k pkk − ℓ̄xxk pkk

− µ−1fx
k
TQ−1

k+1(wk+1 + pxk+1
)− ℓxk(

P−1
k + fx

k
TQ−1

k+1f
x
k − µℓ̄xxk

)
pxk

=fx
k
TQ−1

k+1(wk+1 + pxk+1
) + P−1

k µ̂k + µℓxk

Hence, we recover equation (B.54). Consequently,

−Q−1
k+1f

x
k pxk

+
(
Q−1

k+1 + hx
k+1

TR−1
k+1h

x
k+1

)
pxk+1

+Q−1
k+1wk+1 − hx

k+1
TR−1

k+1γk+1 =

−Q−1
k+1f

x
k

(
P−1
k + fx

k
TQ−1

k+1f
x
k − µℓ̄xxk

)−1 (
fx
k
TQ−1

k+1(wk+1 + pxk+1
) + P−1

k µ̂k + µℓxk
)

+
(
Q−1

k+1 + hx
k+1

TR−1
k+1h

x
k+1

)
pxk+1

+Q−1
k+1wk+1 − hx

k+1
TR−1

k+1γk+1

= P−1
k+1(pxk+1

− µ̂k+1) (B.57)

172

where:

P−1
k+1 = Q−1

k+1 + hx
k+1

TR−1
k+1h

x
k+1 −Q−1

k+1f
x
k

(
P−1
k + fx

k
TQ−1

k+1f
x
k − µℓ̄xxk

)−1
fx
k
TQ−1

k+1

(B.58)

= hx
k+1

TR−1
k+1h

x
k+1 +

(
Qk+1 + fx

k (P
−1
k − µℓ̄xxk)−1fx

k
T
)−1︸ ︷︷ ︸

:=P̄−1
k+1

and:

P−1
k+1µ̂t+1

= −Q−1
k+1wk+1 + hx

k+1
TR−1

k+1γk+1

+Q−1
k+1f

x
k

(
P−1
k + fx

k
TQ−1

k+1f
x
k − µℓ̄xxk

)−1 (
fx
k
TQ−1

k+1wk+1 + P−1
k µ̂k + µℓxk

)
= −

(
Q−1

k+1 −Q−1
k+1f

x
k

(
P−1
k + fx

k
TQ−1

k+1f
x
k − µℓ̄xxk

)−1
fx
k
TQ−1

k+1

)
wk+1

+ hx
k+1

TR−1
k+1γk+1 +Q−1

k+1f
x
k

(
P−1
k + fx

k
TQ−1

k+1f
x
k − µℓ̄xxk

)−1
(P−1

k µ̂k + µℓxk)

= −P̄−1
k+1wk+1 + hx

k+1
TR−1

k+1γk+1

+Q−1
k+1f

x
k

(
P−1
k + fx

k
TQ−1

k+1f
x
k − µℓ̄xxk

)−1
(P−1

k µ̂k + µℓxk) (B.59)

Let’s define:

Kk+1 := (P̄−1
k+1 + hx

k+1
TR−1

k+1h
x
k+1)

−1hx
k+1

TR−1
k+1

= P̄k+1h
x
k+1

T (Rk+1 + hx
k+1P̄k+1h

x
k+1

T)−1 (B.60)

Ek+1 := P−1
k + fx

k
TQ−1

k+1f
x
k − µℓ̄xxk (B.61)

173

We have:

(I −Kk+1h
x
k+1)P̄k+1 = (I − (P̄−1

k+1 + hx
k+1

TR−1
k+1h

x
k+1)

−1hx
k+1

TRk+1h
x
k+1)P̄k+1

= (P̄−1
k+1 + hx

k+1
TR−1

k+1h
x
k+1)

−1 = Pk+1 (B.62)

and get:

µ̂t+1 = −(I −Kk+1h
x
k+1)wk+1 +Kk+1γk+1 + Pk+1Q

−1
k+1f

x
kE

−1
k+1(P

−1
k µ̂k + µℓxk)

(B.63)

but:

Pk+1Q
−1
k+1f

x
kE

−1
k+1P

−1
k

= Pk+1Q
−1
k+1f

x
k

(
P−1
k + fx

k
TQ−1

k+1f
x
k − µℓ̄xxk

)−1
P−1
k (B.64)

= Pk+1Q
−1
k+1f

x
k − Pk+1Q

−1
k+1f

x
k

(
P−1
k + fx

k
TQ−1

k+1f
x
k − µℓ̄xxk

)−1 (
fx
k
TQ−1

k+1f
x
k − µℓ̄xxk

)
= Pk+1

(
Q−1

k+1 −Q−1
k+1f

x
k

(
P−1
k + fx

k
TQ−1

k+1f
x
k − µℓ̄xxk

)−1
fx
k
TQ−1

k+1

)
fx
k

+ Pk+1Q
−1
k+1f

x
kE

−1
k+1µℓ̄

xx
k

= Pk+1

(
Qk+1 + fx

k

(
P−1
k − µℓ̄xxk

)−1
fx
k
T
)−1

fx
k + Pk+1Q

−1
k+1f

x
kE

−1
k+1µℓ̄

xx
k

= Pk+1P̄
−1
k+1f

x
k + Pk+1Q

−1
k+1f

x
kE

−1
k+1µℓ̄

xx
k

= (I −Kk+1h
x
k+1)f

x
k + Pk+1Q

−1
k+1f

x
kE

−1
k+1µℓ̄

xx
k

Therefore,

µ̂k+1 =(I −Kk+1h
x
k+1)(f

x
k µ̂k − wk+1)

+Kk+1γk+1 + µPk+1Q
−1
k+1f

x
kE

−1
k+1(ℓ̄

xx
k µ̂k + ℓxk) (B.65)

174

B.5 Coupling

In this section, we study (B.23) and show that it allows us to couple the past

and future stress:

• Case 1. From (B.23), if t = 0 :

(
ℓ̄xx0 − µ−1P−1

0 − µ−1fx
0
TQ−1

1 fx
0

)
px0 + µ−1fx

0
TQ−1

1 px1

+
(
ℓ̄xu0 − µ−1fx

0
TQ−1

1 fu
0

)
pu0 + ℓx0 − µ−1P−1

0 w0 + µ−1fx
0
TQ−1

1 w1 = 0 (B.66)

From (B.51), we have:

(
ℓ̄xx0 − µ−1fx

0
TQ−1

1 fx
0

)
px0 + µ−1fx

0
TQ−1

1 px1 +
(
ℓ̄xu0 − µ−1fx

0
TQ−1

1 fu
0

)
pu0

(B.67)

+ ℓx0 + µ−1fx
0
TQ−1

1 w1 = µ−1P−1
0 (px0 − µ̂0) (B.68)

• Case 2. From (B.23), if t ≥ 1:

µ−1Q−1
t fx

t−1
Tpxt−1 +

(
ℓ̄xxt − µ−1Q−1

t − µ−1fx
t
TQ−1

t+1f
x
t − µ−1hx

t
TR−1

t hx
t

)
pxt

+ µ−1fx
t
TQ−1

t+1pxt+1

+
(
ℓ̄xut − µ−1fx

t
TQ−1

t+1f
u
t

)
put

+ ℓxt − µ−1Q−1
t wt + µ−1fx

t
TQ−1

t+1wt+1 + µ−1hx
t
TR−1

t γt = 0 (B.69)

175

and from (B.51), we have:

−Q−1
t fx

t−1pxt−1 +
(
Q−1

t + hx
t
TR−1

t hx
t

)
pxt

+Q−1
t wt − hx

t
TR−1

t γt = P−1
t (pxt − µ̂t)

Therefore, in both cases, we find that:

(
ℓ̄xxt − µ−1fx

t
TQ−1

t+1f
x
t

)
pxt + µ−1fx

t
TQ−1

t+1pxt+1 +
(
ℓ̄xut − µ−1fx

t
TQ−1

t+1f
u
t

)
put

+ ℓxt + µ−1fx
t
TQ−1

t+1wt+1 = µ−1P−1
t (pxt − µ̂t)

(B.70)

And from (B.34)

Vtpxt + vt = ℓ̄xxt pxt + ℓ̄xut puk
+ ℓxt + fx

t
Tλt+1

= ℓ̄xxt pxt + ℓ̄xut puk
+ ℓxt

+ fx
t
T
(
µ−1Q−1

t+1

(
pxt+1 − fx

t pxt − fu
t put + wt+1

))

Hence, Equation (B.70) becomes:

Vtpxt + vt = µ−1P−1
t (pxt − µ̂t)

µPtVtpxt + µPtvt = pxt − µ̂t

176

Hence:

pxt =
(
P−1
t − µVt

)−1
(P−1

t µ̂t + µvt) (B.71)

177

Bibliography

[1] Ananye Agarwal, Ashish Kumar, Jitendra Malik, and Deepak Pathak. Legged

locomotion in challenging terrains using egocentric vision. In Conference on

robot learning, pages 403–415. PMLR, 2023.

[2] Anoushka Alavilli, Khai Nguyen, Sam Schoedel, Brian Plancher, and Zachary

Manchester. Tinympc: Model-predictive control on resource-constrained

microcontrollers. arXiv preprint arXiv:2310.16985, 2023.

[3] Elisa Alboni, Gianluigi Grandesso, Gastone Pietro Rosati Papini, Justin

Carpentier, and Andrea Del Prete. Cacto-sl: Using sobolev learning to

improve continuous actor-critic with trajectory optimization. In 6th Annual

Learning for Dynamics & Control Conference, pages 1452–1463. PMLR, 2024.

[4] Walid Amanhoud, Mahdi Khoramshahi, Maxime Bonnesoeur, and Aude

Billard. Force Adaptation in Contact Tasks with Dynamical Systems. Pro-

ceedings - IEEE International Conference on Robotics and Automation, pages

6841–6847, 2020. ISSN 10504729. doi: 10.1109/ICRA40945.2020.9197509.

[5] Yuichiro Aoyama, George Boutselis, Akash Patel, and Evangelos A Theodorou.

Constrained differential dynamic programming revisited. In 2021 IEEE

178

International Conference on Robotics and Automation (ICRA), pages 9738–

9744. IEEE, 2021.

[6] K J Åström. Adaptive Control, pages 437–450. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 1991. ISBN 978-3-662-08546-2. doi: 10.1007/

978-3-662-08546-2 24.

[7] Christopher Atkeson. Using local trajectory optimizers to speed up global

optimization in dynamic programming. Advances in neural information

processing systems, 6, 1993.

[8] Alp Aydinoglu, Adam Wei, Wei-Cheng Huang, and Michael Posa. Consen-

sus complementarity control for multi-contact mpc. IEEE Transactions on

Robotics, 2024.

[9] Antoine Bambade, Sarah El-Kazdadi, Adrien Taylor, and Justin Carpentier.

PROX-QP: Yet another Quadratic Programming Solver for Robotics and

beyond. In RSS 2022 - Robotics: Science and Systems, 2022.

[10] Antoine Bambade, Sarah El-Kazdadi, Adrien Taylor, and Justin Carpentier.

Prox-qp: Yet another quadratic programming solver for robotics and beyond.

In RSS 2022-Robotics: Science and Systems, 2022.

[11] Somil Bansal and Claire J Tomlin. Deepreach: A deep learning approach to

high-dimensional reachability. In 2021 IEEE International Conference on

Robotics and Automation (ICRA), pages 1817–1824. IEEE, 2021.

[12] Tamer Başar. Robust designs through risk sensitivity: An overview. Journal

of Systems Science and Complexity, 34(5):1634–1665, 2021.

179

[13] Tamer Başar and Geert Jan Olsder. Dynamic noncooperative game theory.

SIAM, 1998.

[14] Katrin Baumgärtner, Florian Messerer, and Moritz Diehl. A unified local con-

vergence analysis of differential dynamic programming, direct single shooting,

and direct multiple shooting. In 2023 European Control Conference (ECC),

pages 1–7. IEEE, 2023.

[15] Tamer Başar and Pierre Bernhard. H∞-0ptimal control and related minimax

design problems: A dynamic game approach. IEEE Trans. Autom. Control.,

41, 1996.

[16] MacIej Bednarczyk, Hassan Omran, and Bernard Bayle. Model Predic-

tive Impedance Control. Proceedings - IEEE International Conference

on Robotics and Automation, (1):4702–4708, 2020. ISSN 10504729. doi:

10.1109/ICRA40945.2020.9196969.

[17] Bradley M Bell. The iterated kalman smoother as a gauss–newton method.

SIAM Journal on Optimization, 4(3):626–636, 1994.

[18] Bradley M Bell and Frederick W Cathey. The iterated kalman filter update

as a gauss-newton method. IEEE Transactions on Automatic Control, 38(2):

294–297, 1993.

[19] Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N Pistikopou-

los. The explicit linear quadratic regulator for constrained systems. Auto-

matica, 38(1):3–20, 2002.

[20] P. Bernhard. Minimax versus stochastic partial information control. In

180

Proceedings of 1994 33rd IEEE Conference on Decision and Control, volume 3,

pages 2572–2577 vol.3, 1994. doi: 10.1109/CDC.1994.411532.

[21] Dimitri Bertsekas. Dynamic programming and optimal control: Volume I,

volume 4. Athena scientific, 2012.

[22] Dimitri Bertsekas. Reinforcement learning and optimal control, volume 1.

Athena Scientific, 2019.

[23] Dimitri P Bertsekas. Dynamic programming and suboptimal control: A

survey from adp to mpc. European journal of control, 11(4-5):310–334, 2005.

[24] Dimitri P Bertsekas. Value and policy iterations in optimal control and

adaptive dynamic programming. IEEE transactions on neural networks and

learning systems, 28(3):500–509, 2015.

[25] Arun L Bishop, John Z Zhang, Swaminathan Gurumurthy, Kevin Tracy, and

Zachary Manchester. Relu-qp: A gpu-accelerated quadratic programming

solver for model-predictive control. arXiv preprint arXiv:2311.18056, 2023.

[26] Hans Georg Bock and Karl-Josef Plitt. A multiple shooting algorithm for

direct solution of optimal control problems. IFAC Proceedings Volumes, 17

(2):1603–1608, 1984.

[27] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al.

Distributed optimization and statistical learning via the alternating direction

method of multipliers. Foundations and Trends® in Machine learning, 3(1):

1–122, 2011.

181

[28] Angelo Bratta, Michele Focchi, Niraj Rathod, and Claudio Semini.

Optimization-Based Reference Generator for Nonlinear Model Predictive

Control of Legged Robots. Robotics, 12(1):1–18, 2023. ISSN 22186581. doi:

10.3390/robotics12010006.

[29] Rohan Budhiraja, Justin Carpentier, Carlos Mastalli, and Nicolas Mansard.

Differential dynamic programming for multi-phase rigid contact dynamics.

In IEEE Humanoids, 2018. doi: 10.1109/HUMANOIDS.2018.8624925.

[30] Marco C Campi and Matthew R James. Nonlinear discrete-time risk-sensitive

optimal control. International Journal of Robust and Nonlinear Control, 6

(1):1–19, 1996.

[31] Justin Carpentier and Nicolas Mansard. Analytical derivatives of rigid body

dynamics algorithms. In Robotics: Science and systems (RSS 2018), 2018.

[32] Justin Carpentier, Florian Valenza, Nicolas Mansard, et al. Pinocchio: fast

forward and inverse dynamics for poly-articulated systems. https://stack-of-

tasks.github.io/pinocchio, 2015–2021.

[33] Justin Carpentier, Guilhem Saurel, Gabriele Buondonno, Joseph Mirabel,

Florent Lamiraux, Olivier Stasse, and Nicolas Mansard. The Pinocchio C++

library: A fast and flexible implementation of rigid body dynamics algorithms

and their analytical derivatives. Proceedings of the 2019 IEEE/SICE Inter-

national Symposium on System Integration, SII 2019, pages 614–619, 2019.

doi: 10.1109/SII.2019.8700380.

[34] Justin Carpentier, Guilhem Saurel, Gabriele Buondonno, Joseph Mirabel,

Florent Lamiraux, Olivier Stasse, and Nicolas Mansard. The pinocchio c++

182

library: A fast and flexible implementation of rigid body dynamics algorithms

and their analytical derivatives. In 2019 IEEE/SICE International Symposium

on System Integration (SII), pages 614–619. IEEE, 2019.

[35] Elliot Chane-Sane, Pierre-Alexandre Leziart, Thomas Flayols, Olivier Stasse,

Philippe Souères, and Nicolas Mansard. Cat: Constraints as terminations for

legged locomotion reinforcement learning. arXiv preprint arXiv:2403.18765,

2024.

[36] Hong Chen and Frank Allgöwer. A quasi-infinite horizon nonlinear model

predictive control scheme with guaranteed stability. Automatica, 34(10):

1205–1217, 1998.

[37] Tao Chen, Megha Tippur, Siyang Wu, Vikash Kumar, Edward Adelson, and

Pulkit Agrawal. Visual dexterity: In-hand reorientation of novel and complex

object shapes. Science Robotics, 8(84):eadc9244, 2023.

[38] Stefano Chiaverini and Lorenzo Sciavicco. The Parallel Approach to Force/Po-

sition Control of Robotic Manipulators. IEEE Transactions on Robotics and

Automation, 9(4):361–373, 1993. ISSN 1042296X. doi: 10.1109/70.246048.

[39] David A Copp and Joao P Hespanha. Nonlinear output-feedback model

predictive control with moving horizon estimation. In 53rd IEEE Conference

on Decision and Control, pages 3511–3517. IEEE, 2014.

[40] David A Copp and Joao P Hespanha. Simultaneous nonlinear model predictive

control and state estimation. Automatica, 77:143–154, 2017.

[41] Eduardo Corral, R. Moreno, Maŕıa J. Gómez Garćıa, and Cristina Castejón.

183

Nonlinear phenomena of contact in multibody systems dynamics: a review.

Nonlinear Dynamics, 104:1269 – 1295, 2021.

[42] Henry Cox. On the estimation of state variables and parameters for noisy

dynamic systems. IEEE Transactions on automatic control, 9(1):5–12, 1964.

[43] Wojciech M Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz,

and Razvan Pascanu. Sobolev training for neural networks. Advances in

neural information processing systems, 30, 2017.

[44] Ewen Dantec, Maximilien Naveau, Pierre Fernbach, Nahuel Villa, Guilhem

Saurel, Olivier Stasse, Michel Täıx, and Nicolas Mansard. Whole-body model

predictive control for biped locomotion on a torque-controlled humanoid

robot. In 2022 IEEE-RAS 21st International Conference on Humanoid

Robots (Humanoids), pages 638–644. IEEE, 2022.

[45] Bolei Di and Andrew Lamperski. Newton’s method, bellman recursion and

differential dynamic programming for unconstrained nonlinear dynamic games.

Dynamic Games and Applications, pages 1–49, 2021.

[46] Gianni Di Pillo, Luigi Grippo, and Francesco Lampariello. A class of struc-

tured quasi-newton algorithms for optimal control problems. In Applications

of Nonlinear Programming to Optimization and Control, pages 101–107. Else-

vier, 1984.

[47] Moritz Diehl. Lecture notes on optimal control and estimation. Lecture Notes

on Optimal Control and Estimation, 2014.

[48] Moritz Diehl, Hans Georg Bock, Holger Diedam, Pierre Brice Wieber, Pierre-

184

brice Wieber Fast, and Direct Multiple. Fast Direct Multiple Shooting

Algorithms for Optimal Robot Control. page 28, 2009.

[49] Alexander Dietrich, Xuwei Wu, Kristin Bussmann, Marie Harder, Maged

Iskandar, Johannes Englsberger, Christian Ott, and Alin Albu-Schäffer. Prac-

tical consequences of inertia shaping for interaction and tracking in robot

control. Control Engineering Practice, 114, 2021. ISSN 0967-0661. doi:

https://doi.org/10.1016/j.conengprac.2021.104875.

[50] Badis Djeridane and John Lygeros. Neural approximation of pde solutions:

An application to reachability computations. In Proceedings of the 45th IEEE

Conference on Decision and Control, pages 3034–3039. IEEE, 2006.

[51] CR Dohrmann and RD Robinett. Efficient sequential quadratic program-

ming implementations for equality-constrained discrete-time optimal control.

Journal of Optimization Theory and Applications, 95:323–346, 1997.

[52] CR Dohrmann and RD Robinett. Dynamic programming method for con-

strained discrete-time optimal control. Journal of Optimization Theory and

Applications, 101:259–283, 1999.

[53] Alexander Domahidi, Aldo U Zgraggen, Melanie N Zeilinger, Manfred Morari,

and Colin N Jones. Efficient interior point methods for multistage problems

arising in receding horizon control. In 2012 IEEE 51st IEEE conference on

decision and control (CDC), pages 668–674. IEEE, 2012.

[54] Joseph Duffy. The fallacy of modern hybrid control theory that is based on

“orthogonal complements” of twist and wrench spaces. Journal of Robotic

Systems, 7(2):139–144, 1990.

185

[55] Joseph C Dunn and Dimitri P Bertsekas. Efficient dynamic programming im-

plementations of newton’s method for unconstrained optimal control problems.

Journal of Optimization Theory and Applications, 63(1):23–38, 1989.

[56] Jonathan Eckstein and Michael C Ferris. Operator-splitting methods for

monotone affine variational inequalities, with a parallel application to optimal

control. INFORMS Journal on Computing, 10(2):218–235, 1998.

[57] Garry A Einicke and Langford B White. Robust extended kalman filtering.

IEEE Transactions on Signal Processing, 47(9):2596–2599, 1999.

[58] D Erickson, M Weber, and I Sharf. Contact Stiffness and Damping Estimation

for Robotic Systems. International Journal of Robotics Research, 22(1):41–57,

2003.

[59] Farbod Farshidian, Edo Jelavic, Asutosh Satapathy, Markus Giftthaler, and

Jonas Buchli. Real-Time motion planning of legged robots: A model predictive

control approach. IEEE-RAS International Conference on Humanoid Robots,

pages 577–584, 2017. ISSN 21640580. doi: 10.1109/HUMANOIDS.2017.

8246930.

[60] Roy Featherstone. Rigid Body Dynamics Algorithms. 2008. ISBN

9780387743141. doi: 10.1007/978-1-4899-7560-7.

[61] Hans Joachim Ferreau, Hans Georg Bock, and Moritz Diehl. An online active

set strategy to overcome the limitations of explicit mpc. International Journal

of Robust and Nonlinear Control: IFAC-Affiliated Journal, 18(8):816–830,

2008.

186

[62] Roger Fletcher and Sven Leyffer. Nonlinear programming without a penalty

function. Mathematical programming, 91:239–269, 2002.

[63] Janick V Frasch, Sebastian Sager, and Moritz Diehl. A parallel quadratic

programming method for dynamic optimization problems. Mathematical

programming computation, 7:289–329, 2015.

[64] Gianluca Frison. General rights Algorithms and Methods for High-

Performance Model Predictive Control. 2015. URL www.compute.dtu.dk.

[65] Gianluca Frison and Moritz Diehl. HPIPM: a high-performance quadratic

programming framework for model predictive control. IFAC-PapersOnLine,

53(2):6563–6569, 2020.

[66] Gianluca Frison, Dimitris Kouzoupis, Tommaso Sartor, Andrea Zanelli, and

Moritz Diehl. Blasfeo: Basic linear algebra subroutines for embedded opti-

mization. ACM Transactions on Mathematical Software (TOMS), 44(4):1–30,

2018.

[67] Ahmad Gazar, Majid Khadiv, Andrea Del Prete, and Ludovic Righetti.

Stochastic and robust mpc for bipedal locomotion: A comparative study

on robustness and performance. In 2020 IEEE-RAS 20th International

Conference on Humanoid Robots (Humanoids), pages 61–68. IEEE, 2021.

[68] Markus Giftthaler, Michael Neunert, Markus Stäuble, Jonas Buchli, and

Moritz Diehl. A family of iterative gauss-newton shooting methods for

nonlinear optimal control. In 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 1–9. IEEE, 2018.

www.compute.dtu.dk

187

[69] Tobias Gold, Andreas Völz, and Knut Graichen. Model predictive interaction

control for robotic manipulation tasks. IEEE Transactions on Robotics, 39

(1):76–89, 2023. doi: 10.1109/TRO.2022.3196607.

[70] Gianluigi Grandesso, Elisa Alboni, Gastone P Rosati Papini, Patrick M Wens-

ing, and Andrea Del Prete. Cacto: Continuous actor-critic with trajectory

optimization—towards global optimality. IEEE Robotics and Automation

Letters, 8(6):3318–3325, 2023.

[71] Ruben Grandia, Farbod Farshidian, René Ranftl, and Marco Hutter. Feedback

mpc for torque-controlled legged robots. In 2019 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 4730–4737. IEEE,

2019.

[72] Ruben Grandia, Fabian Jenelten, Shaohui Yang, Farbod Farshidian, and

Marco Hutter. Perceptive Locomotion Through Nonlinear Model-Predictive

Control. IEEE Transactions on Robotics, 39(5):3402–3421, 2023. ISSN

19410468. doi: 10.1109/TRO.2023.3275384.

[73] Ruben Grandia, Fabian Jenelten, Shaohui Yang, Farbod Farshidian, and

Marco Hutter. Perceptive locomotion through nonlinear model-predictive

control. IEEE Transactions on Robotics, 39(5):3402–3421, 2023.

[74] Pascal Grieder, Francesco Borrelli, Fabio Torrisi, and Manfred Morari. Compu-

tation of the constrained infinite time linear quadratic regulator. Automatica,

40(4):701–708, 2004.

[75] Felix Grimminger, Avadesh Meduri, Majid Khadiv, Julian Viereck, Manuel

Wüthrich, Maximilien Naveau, Vincent Berenz, Steve Heim, Felix Widmaier,

188

Thomas Flayols, et al. An open torque-controlled modular robot architecture

for legged locomotion research. IEEE Robotics and Automation Letters, 5(2):

3650–3657, 2020.

[76] Lars Grune and Anders Rantzer. On the infinite horizon performance of

receding horizon controllers. IEEE Transactions on Automatic Control, 53

(9):2100–2111, 2008.

[77] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft

actor-critic: Off-policy maximum entropy deep reinforcement learning with

a stochastic actor. In International conference on machine learning, pages

1861–1870. PMLR, 2018.

[78] Bilal Hammoud, Armand Jordana, and Ludovic Righetti. irisc: Iterative risk

sensitive control for nonlinear systems with imperfect observations. arXiv

preprint arXiv:2110.06700, 2021.

[79] Ankur Handa, Arthur Allshire, Viktor Makoviychuk, Aleksei Petrenko, Ritvik

Singh, Jingzhou Liu, Denys Makoviichuk, Karl Van Wyk, Alexander Zhurke-

vich, Balakumar Sundaralingam, et al. Dextreme: Transfer of agile in-hand

manipulation from simulation to reality. In 2023 IEEE International Confer-

ence on Robotics and Automation (ICRA), pages 5977–5984. IEEE, 2023.

[80] Nathan Hatch and Byron Boots. The value of planning for infinite-horizon

model predictive control. In 2021 IEEE International Conference on Robotics

and Automation (ICRA), pages 7372–7378. IEEE, 2021.

[81] Alexander Herzog, Nicholas Rotella, Sean Mason, Felix Grimminger, Stefan

Schaal, and Ludovic Righetti. Momentum control with hierarchical inverse

189

dynamics on a torque-controlled humanoid. Autonomous Robots, 40:473–491,

2016.

[82] Ali Heydari. Revisiting approximate dynamic programming and its conver-

gence. IEEE transactions on cybernetics, 44(12):2733–2743, 2014.

[83] David Hoeller, Farbod Farshidian, and Marco Hutter. Deep value model

predictive control. In Conference on Robot Learning, pages 990–1004. PMLR,

2020.

[84] David Hoeller, Nikita Rudin, Dhionis Sako, and Marco Hutter. Anymal

parkour: Learning agile navigation for quadrupedal robots. Science Robotics,

9(88):eadi7566, 2024.

[85] Neville Hogan. Impedance Control Part1-3. Transaction of the ASME,

Journal of Dynamic Systems, Measurement, and Control, 107(March 1985):

1–24, 1985.

[86] Neville Hogan. Contact and Physical Interaction. Annual Review of Control,

Robotics, and Autonomous Systems, 5(1):1–25, 2022. ISSN 2573-5144. doi:

10.1146/annurev-control-042920-010933.

[87] Taylor A Howell, Brian E Jackson, and Zachary Manchester. ALTRO: A

fast solver for constrained trajectory optimization. In 2019 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages

7674–7679. IEEE, 2019.

[88] Bei Hu and Arno Linnemann. Toward infinite-horizon optimality in nonlinear

model predictive control. IEEE Transactions on Automatic Control, 47(4):

679–682, 2002.

190

[89] Marco Hutter, Christian Gehring, Dominic Jud, Andreas Lauber, C Dario

Bellicoso, Vassilios Tsounis, Jemin Hwangbo, Karen Bodie, Peter Fankhauser,

Michael Bloesch, et al. Anymal-a highly mobile and dynamic quadrupedal

robot. In 2016 IEEE/RSJ international conference on intelligent robots and

systems (IROS), pages 38–44. IEEE, 2016.

[90] Syed Aseem Ul Islam and Dennis S Bernstein. Recursive least squares for

real-time implementation [lecture notes]. IEEE Control Systems Magazine,

39(3):82–85, 2019.

[91] David Jacobson. Optimal stochastic linear systems with exponential perfor-

mance criteria and their relation to deterministic differential games. IEEE

Transactions on Automatic control, 18(2):124–131, 1973.

[92] Wilson Jallet, Antoine Bambade, Nicolas Mansard, and Justin Carpentier.

Constrained differential dynamic programming: A primal-dual augmented

lagrangian approach. In 2022 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS), pages 13371–13378. IEEE, 2022.

[93] Wilson Jallet, Nicolas Mansard, and Justin Carpentier. Implicit differential

dynamic programming. In 2022 International Conference on Robotics and

Automation (ICRA), pages 1455–1461. IEEE, 2022.

[94] Matthew R James, John S Baras, and Robert J Elliott. Risk-sensitive control

and dynamic games for partially observed discrete-time nonlinear systems.

IEEE transactions on automatic control, 39(4):780–792, 1994.

[95] Armand Jordana, Sébastien Kleff, Avadesh Meduri, Justin Carpentier, Nicolas

191

Mansard, and Ludovic Righetti. Stagewise implementations of sequential

quadratic programming for model-predictive control. Preprint, 2023.

[96] Seul Jung, T. C. Hsia, and R. G. Bonitz. Force tracking impedance control

for robot manipulators with an unknown environment: Theory, simulation,

and experiment. International Journal of Robotics Research, 20(9):765–774,

2001. ISSN 02783649. doi: 10.1177/02783640122067651.

[97] Rudolph Emil Kalman. A new approach to linear filtering and prediction

problems. Transactions of the ASME–Journal of Basic Engineering, 82(Series

D):35–45, 1960.

[98] Sotaro Katayama, Masaki Murooka, and Yuichi Tazaki. Model predictive

control of legged and humanoid robots: models and algorithms. Advanced

Robotics, 37(5):298–315, 2023.

[99] Khalid J. Kazim, Johanna Bethge, Janine Matschek, and Rolf Findeisen.

Combined Predictive Path Following and Admittance Control. Proceedings of

the American Control Conference, 2018-June:3153–3158, 2018. ISSN 07431619.

doi: 10.23919/ACC.2018.8431272.

[100] Marc D. Killpack, Ariel Kapusta, and Charles C. Kemp. Model predictive

control for fast reaching in clutter. Autonomous Robots, 40(3):537–560, 2016.

ISSN 15737527. doi: 10.1007/s10514-015-9492-6.

[101] Donghyun Kim, Jared Di Carlo, Benjamin Katz, Gerardo Bledt, and Sangbae

Kim. Highly dynamic quadruped locomotion via whole-body impulse control

and model predictive control. arXiv preprint arXiv:1909.06586, 2019.

192

[102] Sébastien Kleff, Avadesh Meduri, Rohan Budhiraja, Nicolas Mansard, and

Ludovic Righetti. High-frequency nonlinear model predictive control of

a manipulator. In 2021 IEEE International Conference on Robotics and

Automation (ICRA), pages 7330–7336. IEEE, 2021.

[103] Sébastien Kleff, Ewen Dantec, Guilhem Saurel, Nicolas Mansard, and Lu-

dovic Righetti. Introducing force feedback in model predictive control. In

2022 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 13379–13385, 2022. doi: 10.1109/IROS47612.2022.9982003.

[104] Jonas Koenemann, Andrea Del Prete, Yuval Tassa, Emanuel Todorov, Olivier

Stasse, Maren Bennewitz, and Nicolas Mansard. Whole-body model-predictive

control applied to the hrp-2 humanoid. In 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 3346–3351. IEEE,

2015.

[105] Milan Korda, Didier Henrion, and Colin N Jones. Controller design and value

function approximation for nonlinear dynamical systems. Automatica, 67:

54–66, 2016.

[106] Dimitris Kouzoupis, Gianluca Frison, Andrea Zanelli, and Moritz Diehl.

Recent advances in quadratic programming algorithms for nonlinear model

predictive control. Vietnam Journal of Mathematics, 46(4):863–882, 2018.

[107] Arthur J Krener. Adaptive horizon model predictive control and al’brekht’s

method. In Encyclopedia of Systems and Control, pages 27–40. Springer,

2021.

[108] Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés Valenzuela, Hongkai

193

Dai, Frank Permenter, Twan Koolen, Pat Marion, and Russ Tedrake.

Optimization-based locomotion planning, estimation, and control design

for the atlas humanoid robot. Autonomous robots, 40:429–455, 2016.

[109] Benoit Landry, Hongkai Dai, and Marco Pavone. Seagul: Sample efficient

adversarially guided learning of value functions. In Learning for Dynamics

and Control, pages 1105–1117. PMLR, 2021.

[110] Andreas Lawitzky, Anselm Nicklas, Dirk Wollherr, and Martin Buss. De-

termining states of inevitable collision using reachability analysis. IEEE

International Conference on Intelligent Robots and Systems, pages 4142–4147,

2014. ISSN 21530866. doi: 10.1109/IROS.2014.6943146.

[111] WT Lee. Tridiagonal matrices: Thomas algorithm. MS6021, Scientific

Computation, University of Limerick, 2011.

[112] Sergey Levine and Vladlen Koltun. Guided policy search. In International

conference on machine learning, pages 1–9. PMLR, 2013.

[113] Albert H Li, Preston Culbertson, Vince Kurtz, and Aaron D Ames. Drop:

Dexterous reorientation via online planning. arXiv preprint arXiv:2409.14562,

2024.

[114] Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design

for nonlinear biological movement systems. In ICINCO (1), pages 222–229.

Citeseer, 2004.

[115] Li-zhi Liao and Christine A Shoemaker. Advantages of differential dynamic

programming over newton’s method for discrete-time optimal control prob-

lems. Technical report, Cornell University, 1992.

194

[116] TP Lillicrap. Continuous control with deep reinforcement learning. arXiv

preprint arXiv:1509.02971, 2015.

[117] Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and

Igor Mordatch. Plan online, learn offline: Efficient learning and exploration

via model-based control. arXiv preprint arXiv:1811.01848, 2018.

[118] J. M. Maciejowski. Predictive Control with Constraints. Prentice Hall, 2007.

[119] Josep Marti-Saumell, Joan Solà, Carlos Mastalli, and Angel Santamaria-

Navarro. Squash-box feasibility driven differential dynamic programming. In

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 7637–7644. IEEE, 2020.

[120] Carlos Mastalli, Rohan Budhiraja, Wolfgang Merkt, Guilhem Saurel, Bilal

Hammoud, Maximilien Naveau, Justin Carpentier, Ludovic Righetti, Sethu

Vijayakumar, and Nicolas Mansard. Crocoddyl: An efficient and versatile

framework for multi-contact optimal control. In 2020 IEEE International

Conference on Robotics and Automation (ICRA), pages 2536–2542. IEEE,

2020.

[121] Carlos Mastalli, Rohan Budhiraja, Wolfgang Merkt, Guilhem Saurel, Bilal

Hammoud, Maximilien Naveau, Justin Carpentier, Ludovic Righetti, Sethu

Vijayakumar, and Nicolas Mansard. Crocoddyl: An Efficient and Versa-

tile Framework for Multi-Contact Optimal Control. In IEEE International

Conference on Robotics and Automation (ICRA), 2020.

[122] Carlos Mastalli, Wolfgang Merkt, Josep Marti-Saumell, Henrique Ferrolho,

195

Joan Solà, Nicolas Mansard, and Sethu Vijayakumar. A feasibility-driven

approach to control-limited ddp. Autonomous Robots, 46(8):985–1005, 2022.

[123] Janine Matschek, Johanna Bethge, Pablo Zometa, and Rolf Findeisen. Force

Feedback and Path Following using Predictive Control: Concept and Appli-

cation to a Lightweight Robot. IFAC-PapersOnLine, 50(1):9827–9832, 2017.

ISSN 2405-8963. doi: 10.1016/J.IFACOL.2017.08.898.

[124] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O.M. Scokaert. Constrained

model predictive control: Stability and optimality. Automatica, 36(6):789–814,

jun 2000. ISSN 0005-1098. doi: 10.1016/S0005-1098(99)00214-9.

[125] David Mayne. A second-order gradient method for determining optimal

trajectories of non-linear discrete-time systems. International Journal of

Control, 3(1):85–95, 1966.

[126] David Q Mayne. Model predictive control: Recent developments and future

promise. Automatica, 50(12):2967–2986, 2014.

[127] David Q Mayne, James B Rawlings, Christopher V Rao, and Pierre OM

Scokaert. Constrained model predictive control: Stability and optimality.

Automatica, 36(6):789–814, 2000.

[128] D.Q. Mayne. Optimization in model based control. In Dynamics and Con-

trol of Chemical Reactors, Distillation Columns and Batch Processes (Dy-

cord’95), IFAC Postprint Volume, pages 229–242. Pergamon, Oxford, 1995.

ISBN 978-0-08-042368-5. doi: https://doi.org/10.1016/B978-0-08-042368-5.

50041-1. URL https://www.sciencedirect.com/science/article/pii/

B9780080423685500411.

https://www.sciencedirect.com/science/article/pii/B9780080423685500411
https://www.sciencedirect.com/science/article/pii/B9780080423685500411

196

[129] Avadesh Meduri, Paarth Shah, Julian Viereck, Majid Khadiv, Ioannis

Havoutis, and Ludovic Righetti. Biconmp: A nonlinear model predictive

control framework for whole body motion planning. IEEE Transactions on

Robotics, 2023.

[130] Maria Vittoria Minniti, Ruben Grandia, Kevin Fäh, Farbod Farshidian, and

Marco Hutter. Model predictive robot-environment interaction control for

mobile manipulation tasks. 2021 IEEE International Conference on Robotics

and Automation (ICRA), pages 1651–1657, 2021.

[131] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel

Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidje-

land, Georg Ostrovski, et al. Human-level control through deep reinforcement

learning. nature, 518(7540):529–533, 2015.

[132] Igor Mordatch and Emo Todorov. Combining the benefits of function ap-

proximation and trajectory optimization. In Robotics: Science and Systems,

volume 4, page 23, 2014.

[133] J. Morimoto, G. Zeglin, and C.G. Atkeson. Minimax differential dynamic

programming: application to a biped walking robot. In Proceedings 2003

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

2003), volume 2, pages 1927–1932, 2003. doi: 10.1109/IROS.2003.1248926.

[134] Jun Morimoto and Christopher Atkeson. Minimax differential dynamic

programming: An application to robust biped walking. Advances in neural

information processing systems, 15, 2002.

[135] H Mukai, A Tanikawa, I Tunay, IA Ozcan, IN Katz, H Schattler, P Rinaldi,

197

GJ Wang, L Yang, and Y Sawada. Game-theoretic linear quadratic method

for air mission control. In 39th IEEE Conference on Decision and Control,

volume 3, pages 2574–2580. IEEE, 2000.

[136] Rémi Munos and Csaba Szepesvári. Finite-time bounds for fitted value

iteration. Journal of Machine Learning Research, 9(5), 2008.

[137] DMMurray and SJ Yakowitz. Differential dynamic programming and newton’s

method for discrete optimal control problems. Journal of Optimization Theory

and Applications, 43(3):395–414, 1984.

[138] Tenavi Nakamura-Zimmerer, Qi Gong, and Wei Kang. Adaptive deep learning

for high-dimensional hamilton–jacobi–bellman equations. SIAM Journal on

Scientific Computing, 43(2):A1221–A1247, 2021.

[139] Michael Neunert, Markus Stäuble, Markus Giftthaler, Carmine D Bellicoso,

Jan Carius, Christian Gehring, Marco Hutter, and Jonas Buchli. Whole-body

nonlinear model predictive control through contacts for quadrupeds. IEEE

Robotics and Automation Letters, 3(3):1458–1465, 2018.

[140] W. S. Newman. Stability and performance limits of interaction controllers.

Journal of Dynamic Systems, Measurement and Control, Transactions of the

ASME, 114(4):563–570, 1992. ISSN 15289028. doi: 10.1115/1.2897725.

[141] John Ndegwa Nganga, He Li, and Patrick Wensing. Second-order differential

dynamic programming for whole-body mpc of legged robots. In Embracing

Contacts-Workshop at ICRA 2023, 2023.

[142] Bethany L Nicholson, Wei Wan, Shivakumar Kameswaran, and Lorenz T

Biegler. Parallel cyclic reduction strategies for linear systems that arise in dy-

198

namic optimization problems. Computational Optimization and Applications,

70:321–350, 2018.

[143] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer,

1999.

[144] Brendan O’Donoghue, Giorgos Stathopoulos, and Stephen Boyd. A split-

ting method for optimal control. IEEE Transactions on Control Systems

Technology, 21(6):2432–2442, 2013.

[145] Artemiy Oleinikov, Sergey Soltan, Zarema Balgabekova, Alberto Bempo-

rad, and Matteo Rubagotti. Scenario-based model predictive control with

probabilistic human predictions for human–robot coexistence. Control

Engineering Practice, 142(November 2023):105769, 2024. ISSN 09670661.

doi: 10.1016/j.conengprac.2023.105769. URL https://doi.org/10.1016/j.

conengprac.2023.105769.

[146] JFA De O Pantoja and DQ Mayne. Sequential quadratic programming algo-

rithm for discrete optimal control problems with control inequality constraints.

International Journal of Control, 53(4):823–836, 1991.

[147] Amit Parag, Sebastien Kleff, Leo Saci, Nicolas Mansard, and Olivier Stasse.

Value learning from trajectory optimization and sobolev descent: A step

toward reinforcement learning with superlinear convergence properties. Pro-

ceedings - IEEE International Conference on Robotics and Automation, pages

1410–1416, 2022. ISSN 10504729. doi: 10.1109/ICRA46639.2022.9811993.

[148] Brian Plancher, Zachary Manchester, and Scott Kuindersma. Constrained un-

https://doi.org/10.1016/j.conengprac.2023.105769
https://doi.org/10.1016/j.conengprac.2023.105769

199

scented dynamic programming. In 2017 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 5674–5680. IEEE, 2017.

[149] Marc Raibert and J J Craig. Hybrid Position / Force Control of Manipulators.

Journal of Dynamic Systems, Measurement, and Control, 102(June 1981):

126–133, 1981.

[150] C. V. Rao, S. J. Wright, and J. B. Rawlings. Application of interior-point meth-

ods to model predictive control. Journal of Optimization Theory and Appli-

cations, 99(3):723–757, 1998. ISSN 00223239. doi: 10.1023/A:1021711402723.

[151] Herbert E Rauch, F Tung, and Charlotte T Striebel. Maximum likelihood

estimates of linear dynamic systems. AIAA journal, 3(8):1445–1450, 1965.

[152] Luis A Rodriguez and Athanasios Sideris. An active set method for constrained

linear quadratic optimal control. In Proceedings of the 2010 American Control

Conference, pages 5197–5202. IEEE, 2010.

[153] Angel Romero, Robert Penicka, and Davide Scaramuzza. Time-Optimal

Online Replanning for Agile Quadrotor Flight. IEEE Robotics and Automation

Letters, 7(3):7730–7737, 2022. ISSN 23773766. doi: 10.1109/LRA.2022.

3185772.

[154] Nicholas Rotella, Alexander Herzog, Stefan Schaal, and Ludovic Righetti.

Humanoid momentum estimation using sensed contact wrenches. In 2015

IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids),

pages 556–563. IEEE, 2015.

[155] Simo Särkkä and Ángel F Garćıa-Fernández. Temporal parallelization of

200

dynamic programming and linear quadratic control. IEEE Transactions on

Automatic Control, 68(2):851–866, 2022.

[156] Marie Schumacher, Janis Wojtusch, Philipp Beckerle, and Oskar von Stryk.

An introductory review of active compliant control. Robotics and Autonomous

Systems, 119:185–200, 2019. ISSN 09218890. doi: 10.1016/j.robot.2019.06.009.

[157] Roland Schwan, Yuning Jiang, Daniel Kuhn, and Colin N Jones. Piqp:

A proximal interior-point quadratic programming solver. arXiv preprint

arXiv:2304.00290, 2023.

[158] Homayoun Seraji. ADAPTIVE ADMITTANCE CONTROL: An Approach

to Explicit Force Control. Jet Propulsion, pages 2705–2712, 1994.

[159] Homayoun Seraji and Richard Colbaugh. Force tracking in impedance con-

trol. International Journal of Robotics Research, 16(1):97–117, 1997. ISSN

02783649. doi: 10.1177/027836499701600107.

[160] Bruno Siciliano. Parallel force/position control of robot manipulators. In

Robotics Research, pages 78–89. Springer London, 1996. ISBN 978-1-4471-

1021-7.

[161] Athanasios Sideris and James E Bobrow. An efficient sequential linear

quadratic algorithm for solving nonlinear optimal control problems. In

Proceedings of the 2005, American Control Conference, 2005., pages 2275–

2280. IEEE, 2005.

[162] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,

George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda

201

Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep

neural networks and tree search. nature, 529(7587):484–489, 2016.

[163] Sumeet Singh, Jean-Jacques Slotine, and Vikas Sindhwani. Optimizing

trajectories with closed-loop dynamic sqp. In 2022 International Conference

on Robotics and Automation (ICRA), pages 5249–5254. IEEE, 2022.

[164] Jean-Pierre Sleiman, Farbod Farshidian, Maria Vittoria Minniti, and Marco

Hutter. A unified mpc framework for whole-body dynamic locomotion and

manipulation. IEEE Robotics and Automation Letters, 6(3):4688–4695, 2021.

[165] Giorgos Stathopoulos, Milan Korda, and Colin N Jones. Solving the infinite-

horizon constrained lqr problem using accelerated dual proximal methods.

IEEE Transactions on Automatic Control, 62(4):1752–1767, 2016.

[166] Marc C Steinbach. A structured interior point SQP method for nonlinear

optimal control problems. Springer, 1994.

[167] Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and

Stephen Boyd. OSQP: An operator splitting solver for quadratic programs.

Mathematical Programming Computation, 12(4):637–672, 2020.

[168] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-

duction. MIT press, 2018.

[169] Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of

complex behaviors through online trajectory optimization. In 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 4906–4913.

IEEE, 2012.

202

[170] Yuval Tassa, Nicolas Mansard, and Emo Todorov. Control-limited differential

dynamic programming. In 2014 IEEE International Conference on Robotics

and Automation (ICRA), pages 1168–1175. IEEE, 2014.

[171] Sebastian Thrun. Probabilistic robotics. Communications of the ACM, 45(3):

52–57, 2002.

[172] Firdaus E. Udwadia and Robert E. Kalaba. A new perspective on constrained

motion. Proceedings of the Royal Society of London. Series A: Mathematical

and Physical Sciences, 439(1906):407–410, 1992. ISSN 0962-8444. doi: 10.

1098/RSPA.1992.0158.

[173] Lander Vanroye, Ajay Sathya, Joris De Schutter, and Wilm Decré. Fat-

rop: A fast constrained optimal control problem solver for robot trajectory

optimization and control. arXiv preprint arXiv:2303.16746, 2023.

[174] Robin Verschueren, Gianluca Frison, Dimitris Kouzoupis, Jonathan Frey,

Niels van Duijkeren, Andrea Zanelli, Branimir Novoselnik, Thivaharan Albin,

Rien Quirynen, and Moritz Diehl. acados—a modular open-source framework

for fast embedded optimal control. Mathematical Programming Computation,

14(1):147–183, 2022.

[175] Julian Viereck, Avadesh Meduri, and Ludovic Righetti. Valuenetqp: Learned

one-step optimal control for legged locomotion. In Learning for Dynamics

and Control Conference, pages 931–942. PMLR, 2022.

[176] Nahuel A Villa and Pierre-Brice Wieber. Model predictive control of biped

walking with bounded uncertainties. In 2017 IEEE-RAS 17th International

Conference on Humanoid Robotics (Humanoids), pages 836–841. IEEE, 2017.

203

[177] Luigi Villani and Joris De Schutter. Force Control, pages 161–185. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-30301-5. doi:

10.1007/978-3-540-30301-5 8.

[178] Richard Volpe and Pradeep Khosla. Theoretical and experimental investi-

gation of explicit force control strategies for manipulators. IEEE Transac-

tions on Automatic Control, 38(11):1634–1650, 1993. ISSN 00189286. doi:

10.1109/9.262033.

[179] Henning U Voss, Jens Timmer, and Jürgen Kurths. Nonlinear dynamical

system identification from uncertain and indirect measurements. International

Journal of Bifurcation and Chaos, 14(06):1905–1933, 2004.

[180] Andreas Wächter and Lorenz T. Biegler. On the implementation of an

interior-point filter line-search algorithm for large-scale nonlinear program-

ming, volume 106. 2006. ISBN 1010700405. doi: 10.1007/s10107-004-0559-y.

[181] Arne Wahrburg and Kim Listmann. MPC-based admittance control for

robotic manipulators. 2016 IEEE 55th Conference on Decision and Control,

CDC 2016, pages 7548–7554, 2016. doi: 10.1109/CDC.2016.7799435.

[182] Jiayi Wang, Sanghyun Kim, Teguh Santoso Lembono, Wenqian Du, Jaehyun

Shim, Saeid Samadi, Ke Wang, Vladimir Ivan, Sylvain Calinon, Sethu Vi-

jayakumar, et al. Online multi-contact receding horizon planning via value

function approximation. IEEE Transactions on Robotics, 2024.

[183] Yang Wang and Stephen Boyd. Fast model predictive control using online

optimization. IEEE Transactions on control systems technology, 18(2):267–

278, 2009.

204

[184] D. Whitney. Historical perspective and state of the art in robot force control.

In Proceedings. 1985 IEEE International Conference on Robotics and Automa-

tion, volume 2, pages 262–268, 1985. doi: 10.1109/ROBOT.1985.1087266.

[185] Daniel E Whitney. Force feedback control of manipulator fine motions.

Journal of Dynamic Systems, Measurement and Control, Transactions of the

ASME, 99(2):91–97, 1977. ISSN 15289028. doi: 10.1115/1.3427095.

[186] Peter Whittle. Risk-sensitive linear/quadratic/gaussian control. Advances in

Applied Probability, 13(4):764–777, 1981.

[187] Stephen J Wright. Solution of discrete-time optimal control problems on

parallel computers. Parallel Computing, 16(2-3):221–237, 1990.

[188] Stephen J Wright. Partitioned dynamic programming for optimal control.

SIAM Journal on optimization, 1(4):620–642, 1991.

[189] Stephen J Wright. Interior point methods for optimal control of discrete time

systems. Journal of Optimization Theory and Applications, 77(1):161–187,

1993.

[190] Haoru Xue, Chaoyi Pan, Zeji Yi, Guannan Qu, and Guanya Shi. Full-order

sampling-based mpc for torque-level locomotion control via diffusion-style

annealing. arXiv preprint arXiv:2409.15610, 2024.

[191] Alan Yang and Stephen Boyd. Value-gradient iteration with quadratic

approximate value functions. Annual Reviews in Control, 56:100917, 2023.

[192] William Yang and Michael Posa. Impact-invariant control: Maximizing

control authority during impacts. arXiv preprint arXiv:2303.00817, 2023.

205

[193] Tsuneo Yoshikawa. Force control of robot manipulators. Proceedings - IEEE

International Conference on Robotics and Automation, 1(April):220–226, 2000.

ISSN 10504729. doi: 10.1109/robot.2000.844062.

[194] Linrui Zhang, Li Shen, Long Yang, Shixiang Chen, Bo Yuan, Xueqian Wang,

and Dacheng Tao. Penalized proximal policy optimization for safe reinforce-

ment learning. arXiv preprint arXiv:2205.11814, 2022.

[195] Mingyuan Zhong, Mikala Johnson, Yuval Tassa, Tom Erez, and Emanuel

Todorov. Value function approximation and model predictive control. In

2013 IEEE symposium on adaptive dynamic programming and reinforcement

learning (ADPRL), pages 100–107. IEEE, 2013.

[196] Simon Zimmermann, Roi Poranne, and Stelian Coros. Dynamic manipu-

lation of deformable objects with implicit integration. IEEE Robotics and

Automation Letters, 6(2):4209–4216, 2021.

